Who is the Offender to Destroy the Fiber Cables?

Ever since fiber cables have been applied to the communication network, the fiber footprints cover all over the world. Fiber cables are essential components of nearly all modern computer and communications systems. They’re like the veins of the global communication systems, buried and aerial paths, even under the ocean. Fiber cables are all around us and incessantly supply the information and data to us. However, there is an annoying thing that once the fiber cables were damaged or cut, it may cause a big loss because of the network disruption. So, who is the offender to destroy fiber cables? This paper will tell you the truth, but unfortunately, there may be more than one.

Construction

Construction companies and excavators seem like the natural enemy of buried cables. Construction comes in many forms. Backhoes, post-hole augers and even hand shovels can all bring network traffic to a halt by severing your fiber optic cable. You would think that they would have called someone and tried to make sure they weren’t cutting into something dangerous like gas or oil. But ironically, they never do that before they dig.

1.construction

Nature & Weather

The biggest offender to destroy fiber cables are nature and extreme weather conditions. Hurricanes, mud slides, flood and ice storms etc. natural disaster and extreme weather are nightmare not only to our personal life and property, but also the fiber cables. We can make snowman and go skating in colder climates. What a pleasant thing! However, at this time, the frontline cable engineer must to do an emergency network repair under such harsh conditions in order to avoid additional damage and downtime. Because water that enters a splice enclosure can freeze, crushing the fiber strands and leaving you with a costly network outage. Additionally, lightning is also a factor to destroy fiber cables. When lightning strikes the ground, it will search for the best conductor available, even if it’s underground. If that happens to be the armor or trace-wire of your fiber cable, then damage to the cable sheath and even the fiber itself is very likely.

2.icesplicethumb

Artificial Destruction

Here humans refers to the people who steal the fiber. They cut the fiber thinking it has value and can be sold in pieces. The most classical event is that a 75 year-old woman in Georgia (country in Asia) was digging with her spade, looking for copper, which she wanted to sell for scrap, when she accidentally cut the fiber optic cable that provided internet to 90% of Armenia. It is ridiculous. It is fiber but not copper! In addition, people vandalize the fiber cable in other ways, e.g. for gun practice. This especailly happens in the rough parts of town which makes the cable repair work become dangerous. Furthermore, land disputes which causes artificial malicious damage of fiber is also a fiber damage reason.

3.human

Animals Chew & Bite

We can try to reason with humans and publicize our buried fiber cable, but there is nothing we can do about the cable damage causing by animals. Squirrel, a furry little nut eater, seems to be deeply fond of fiber cable sheathing besides nuts. We even doubt that the cable manufacturers of using peanut oil in the sheathing. Since they have a life-long drive to gnaw, squirrel is often responsible for extensive damage to fiber optic cable. Even metal armored cable can get cut in two by this furry critter. In addition, undersea cables aren’t exempt from cuts. Because there is another animal under ocean like to bite cables. It is shark. Why shark would like to eat fiber cables? Effect by magnetic fields is one of the explaining at present. We have no idea how we can combat these wayward rodents. Now, only thing we can do is always looking for ways to improve.

4animals-chew

Vehicle Damage

This is an unimaginable thing why vehicle will damage the fiber cable. Vehicle, here mainly refers to big trucks, or maybe small airplane. From people running into telephone poles to truckers underestimating the height of their rigs – it’s all part of the problem. For example, a cable damage accident causing by a truck happened in Pennsylvania. A trucker got lost and accidently turned down a residential street. His rig got tangled up in a mess of overhead phone cables. But that didn’t stop him! He kept pushing forward until his rig was tied up like a Christmas present. He was dragging a 20 foot section of broken telephone pole down the street before he stopped to see what was impeding his progress. To address this situation, we can forbid trucks from entering the residential street or city by limiting the height of the vehicles. However, accident always happens with all kinds of tricks, e.g. a small airplane will destroy the fiber cables. This happened in California. A small airplane was attempting to land at the Burbank International Airport and overshot the runway and crashed in a residential area. It clipped the poles that the aerial fiber was attached to, causing everything to come down. Though it is just a small probability event, it really refresh the record of fiber cut causing by vehicle.

5.Vehicle Damage

Cable Protection, Repair and Recovery

During all of these bizarre and annoying causes of fiber damage, no matter artificial destruction, natural disasters, animals, or even impossible odds, we may never know in advance which will happen, and even can’t blame it. Only thing we can do is to take a good protection for our fiber cables. Waterproof fiber cables, armored fiber cables and the other outdoor cables which are designed to protect fibers in a harsh application environment are widely used in this field. Of course, more better protection methods will be developed in the future. In fact, there are some force majeure factors which cause signal loss and cut the network. Repairs and recovery service are necessary. There is a group of people who are willing to get down into the trenches in the first time, make the necessary repairs and recovery service every time when network is down. They are great and worthy of respect.

6.repair&restore


Article From: Fiberstore Blog

Prefabricated Modular Data Center – an Extremely Agile and Cost-efficient Option

Prefabricated Modular Data CenterWhether it’s an enterprise or multi-tenant (co-location) facility, the data center is fast becoming an organization’s most valuable strategic asset. Its ability to handle immense volumes of data, provide highly reliable IT services for users and quickly adapt to the increasing demands of a dynamic environment can make or break a business. As a result, IT and facilities professionals are constantly looking to make their data centers more agile and efficient.

A typical data center is a traditional brick-and-mortar facility that can range from a few thousand to a million square feet or more. A data center of this type is often pre-designed to house all of the necessary racks, power distribution, cooling, cabling, fire suppression, and physical security systems needed to support IT services over the next 10 to 15 years. These facilities can come with a hefty price tag in the hundreds of millions of dollars and take two to three years to plan, design and build.

So, what’s the problem? As IT technologies rapidly evolve and virtualization and cloud computing complicates traditional capacity planning, a brick-and-mortar data center designed today could conceivably become obsolete before it is ever deployed. Its power, cooling and IT “white space” requirements might have been specified by the business at a certain point in time, but by the time the facility actually goes live, the needs of the business—and the data center technologies available to support the business—may have irrevocably changed. This constant demand for change results in stranded or inadequate space, power, or cooling, and leaves traditional data center owners trapped in a perpetual and expensive retrofit cycle while attempting to save their initial capital investment.

As a result, many data center owners and operators are exploring alternatives to traditional data center design-and-build.

Prefabricated Modular Data CenterWithin the last several years, the market has warmed to the concept of the prefabricated modular data center. A modular data center is a concept that uses prefabricated modules—built and tested at a factory, disassembled, shipped to a site and then reassembled to deliver data center white space, power and cooling infrastructure. A modular data center can be set up and operational within 14 to 20 weeks instead of two to three years. Also, as business capacity needs or technologies change, new modules addressing the change can be quickly and cost-efficiently added or existing solutions pre-engineered for upgrading can be seamlessly modified.

This approach enables businesses to focus on meeting their current and very near term data center capacity needs, rather than attempting to project and build for their anticipated long-term demand. It creates a purpose-built data center infrastructure that’s built to fit from the start.

The benefits of a prefabricated modular data center include:

  • Significant capital expenditure savings in design, planning, construction and infrastructure
  • Lower power, cooling, and operational expenses due to infrastructure right sizing, engineering out complexity and the usage of hyper-efficient innovative cooling designs
  • The ability to future-proof the data center by easily upgrading whenever more capacity is needed

These benefits are why the prefabricated modular data center is an extremely agile and cost-efficient option for data center owners and operators looking beyond traditional approaches to address rapid changes in business and technology needs today and tomorrow.

Challenges and Innovations: the Modern Data Center – Modular Data Center

Modern Data CenterThe modern data center is a complex place. The proliferation of mobile devices, like tablets and smartphones, place an ever-increasing pressure on the IT departments and data centers. End-user and customers’ expectation levels have never been higher and the demand for data shows no sign of slowing down. Data center managers must manage all of these elements while also remaining efficient and keeping costs under control. So where does the data center go from here?

One thing I have noticed in the evolution of the modern data center is that the facilities are gaining importance; improving energy efficiency and IT management have come to the forefront. Maximizing the organization’s resources is vital, and that means delivering more to facilities and equipment without expending more on staffing. IDC forecasts that during the next two years, 25 percent of all large and mid-sized businesses will address the power and cooling facility mismatches in their data centers with new IT systems and put a 75 percent cap on data center space used. So there again is the crucial challenge of doing more and innovating while keeping budgets and spend under control.

Another key part of the next generation data center mix is automation. Today’s data center manager is engaged in sourcing the right automation tools that will help them manage energy consumption and add new technology without disrupting normal operations. These are a few of the key challenges in the modern data center—so data center managers and IT departments must find ways to address them.

Where does the Data Center Go Next?

At the heart of data center evolution is the information technology sector’s rapid rate of change. Many new products and services must be implemented with much less time to value, and data centers need to be agile enough to assess and accommodate them all. If you examine enterprise data centers, then you might observe the ways that cloud computing and hyperscale innovations are displacing traditional enterprise systems, with new paradigms pioneered by innovators like Amazon and Google. With new options being developed, enterprises now have to chart strategies for cloud computing, including public, private or hybrid cloud. Gauging where the technology will go next is difficult to tell. Will the traditional vendors, such as Cisco and EMC, prevail or will new paradigms from Nutanix or Simplivity disrupt and displace these traditional data center dominators?

The race is on to manage the rapid rate of change while also staying agile, meeting end-user expectations and managing costs. For example, data center managers must handle the level of capacity their data center requires while ensuring they don’t overspend on unused capacity. This is where the focus on data center design comes into play.

Taking the Data Center Forward

These specific needs and challenges that the modern data center faces require working with the right tools and solutions. Modular, purpose-built data center infrastructure allows organizations to develop data center services based on need—when capacity rises and where capacity is needed. For example, we’ve observed in Singapore that most data centers operate slightly above 2.1 Power Usage Effectiveness (PUE). This means that companies spend more on cooling their data center rather than on operating and powering the IT equipment. It is a simple challenge—drive efficiency without impacting operations. You want to drive PUE down to approximately 1.06, regardless of where you need to operate, and reap huge energy savings while better serving customers. If done right, there is a positive environmental impact.

Changing the paradigm of the traditional data center enables organizations to reap these rewards. Assessing and establishing business objectives that reflect what is possible, rather than what always has been or what is easier and more comfortable, has led to innovative services and new business models that reset the competitive standards for everyone. Better PUE is a mandatory step in this process. The PUE journey continues as evidenced by Amazon, which had recently taken to harnessing wind to power its data centers. Modular data centers will play a major part in this PUE journey, thanks to more efficient use of energy and greater flexible support for resiliency and compute density.

Introduction to Fiber Optic Sensor

In recent years, fiber optic sensor has been deployed successfully in the supervision of structures. Because it is immune to electromagnetic interference and can handle extreme conditions, so it is gaining popularity as the sensor of choice for many industries. Fiber optic sensor is a sensing device that converts light rays into electronic signals. It is usually used for measuring physical quantities such as temperature, pressure, strain, voltages and acceleration etc. This blog is to introduce fiber optic sensor’s classification, characteristics and applications.

Classification

Fiber optic sensor can be mainly classified by sensing location, operating principle and applications. Depending on location of sensor, there are intrinsic and extrinsic fiber optic sensors. Considering the operating principle and demodulation technique, fiber optic sensors can be further divided into intensity, phase, frequency and polarization sensors. Based on application, fiber optic sensors can be classified in physical, chemical, bio-chemical sensors.

Characteristics
Fiber optic sensor offers unique characteristics that make it very popular and sometimes become the only viable sensing solution. Some inherent characteristics of fiber optic sensor are shown as following:

  • Harsh environment stability to strong electromagnetic interference immunity, high temperature and chemical corrosion, as well as high pressure and high voltage etc.
  • Very small size, passive and low power.
  • Excellent performance such as high sensitivity and wide bandwidth.
  • Long distance operation.
  • High sensitivity.
  • Multiplexed or distributed measurements – which are used to offset their major disadvantages of high cost and end-user unfamiliarity.
Applications
Fiber optic sensor has a variety of applications that can be found in equipment from computers to motion detectors. Several applications are specifically shown as following:

  • Mechanical Measurement – such as rotation,acceleration, electric and magnetic field measurement, temperature, pressure, acoustics,vibration, linear and angular position, strain, humidity, viscosity etc.
  • Electrical & Magnetic Measurements
  • Chemical & Biological Sensing
  • Monitoring the physical health of structures in real time.
  • Buildings and Bridges – concrete monitoring during setting, crack monitoring, spatial displacement measurement, neutral axis evolution, long-term deformation monitoring, concrete-steel interaction and post-seismic damage evaluation.
  • Tunnels – multipoint optical extensometers, convergence monitoring, shotcrete vaults evaluation, and joints monitoring damage detection.
  • Dams – foundation monitoring, joint expansion monitoring, spatial displacement measurement, leakage monitoring, and distributed temperature monitoring.
  • Heritage structures – displacement monitoring, crack opening analysis, post-seismic damage evaluation, restoration monitoring, and old-new interaction.
  • Detection of Leakage

By this blog, we have learnt some basic knowledge about fiber optic sensor by its classification, characteristics and applications. However, it is not just enough, more knowledge is waiting for us to learn. For more detailed information about fiber optic sensor, welcome to visit Fiberstore or contact us over sales@fiberstore.com.

The Applications and Basic Settings of OTDR

OTDR refers to Optical Time-Domain Reflectometer, a test instrument that analyzes the light loss in an optical fiber and verify inline splices on concatenated fiber optic cables and locate faults. If you use fiber optic cables for network connectivity, you ought to know about the applications and basic setting of OTDR.

Applications:
application of OTDR in life

  • OTDR can be used for return loss measurements, although quoted accuracy is not particularly high. It is very useful for measuring points loss on installed systems where it is used to find faults and measure point losses such as caused by splicing. However, to do this accurately is more complicated and time consuming than is commonly supposed. Since a measurement should be taken from both ends of the system and then averaged.
  • OTDR is useful for testing fiber optic cables. It can verify splice loss, measure length and find faults. It simply shows you where the cables are terminated and confirm the quality of the fibers, connections and splices. What’s more, OTDR trace could be also used for troubleshooting, since it can show where breaks are in fiber when trace is compared to installation documentation.
  • OTDR is also widely used for optical cable maintenance and construction. Because it can evaluate the fiber cable length, measure optical transmission and connection attenuation, as well as detect the faulty location of the fiber links.
  • In addition to fiber characterization, OTDR can also be used for sensing chemicals and gases. Because certain substances cause changes to the light guiding properties of the fiber and those can be observed as changes in the measurement curve.

According to the contents above, we could learn that OTDR is a valuable fiber optic tester in many applications. However, if you use it in an improper way, it can be misleading and can lead to some unnecessary mistakes. So it is necessary to understand some basic settings when using OTDR. Using an OTDR is not very difficult, but it does require familiarity. Here are some tips on how to minimize the chance of making a costly mistake.

Basic Settings:

  • Fiber Type – first you should choose singlemode or multimode.
  • Wavelength – you usually start with 850 nm on multimode fiber and 1310 nm on singlemode, since the shorter wavelength has more backscatter so the trace will be less noisy.
  • Measurement Parameters – the typical parameters to be set are distance range, resolution, and pulse width.
  • Event Threshold – it determines how much loss or change will be tagged as an event.
  • Index of Refraction – it is the speed of light in the fiber. You can obtain this figure from the fiber manufacturer. In most cases, you can take it directly from a standard specific sheet.
  • Display Units – they are usually labeled in feet or meters.
  • Storage Memory – this should be cleared so a new figure can be saved or stored.
  • Dead Zone Jumper – you must connect this fiber which should be sufficiently long between the OTDR and the fiber under test. Sometimes you may also have to connect it at the far end of the cable.

OTDR is valuable test instruments that can illuminate problems in your optical fiber. Once you’re acquainted with what it is used for and learn some basic settings about it, you’ll be prepared to detect and eliminate your optical fiber events. It is an ideal test instrument applied to return loss measurement, fiber optic cables testing, optical cable maintenance and construction, as well as sensing chemicals and gases etc.