How To Distinguish Between Good or Bad The Quality of Fiber Optic Cable

1. Ointment. Ointment is mainly fine paste paste with cable, fiber paste normally should be full of the casing, cable paste should be under pressure every crevice of cable core. Now, fiber paste sufficient half-full or less the practice of cable extract some just wipe a layer of the cable core, while others are in the middle of the fiber optic cable two charge is not sufficient. This will make the fiber are not good protection, the impact of the transmission performance of optical fiber attenuation, poor water resistance less than the national standard, once the cable accidental seepage will cause the whole links seepage scrapped. Under normal circumstances, even accidental seepage simply repair a section of water seepage can, you do not need to start over. (National standard water-blocking performance: three meters of fiber optic cable, one meter of water column pressure round the clock impermeable.) If use poor ointment will also appear to be happening, and may because the ointment thixotropic, cause the fiber to cause microbending loss, the link transmission characteristics failed; ointment with acidic also with fiber optic cable metal materials analysis H reaction precipitation of hydrogen molecules, fiber case of H decay will increase dramatically, resulting in the entire link interrupt transmission.

2. Sheath. The cable sheath is necessary to adapt to many different complex climate, but also to ensure the stability of the long-term (at least 25 years). Cable jacket not only have a certain strength, low thermal deformation, wear, water permeability, heat-recoverable, and coefficient of friction, but also should be strong resistance to environmental performance materials processing features. Less or bad sheath material cracking, water seepage through factory acceptance, but the quality is defective use for some time, using recycled plastics to replace quality polyethylene sheath material is more serious. High quality sheath material made of fibe optic cable, a cable skin smooth, bright, uniform thickness, no bubbles, otherwise the coarse skin of fiber optic cable, and a lot of very small pit, and because of the thin thickness, the entire outer diameter of the fiber optic cable will be muach smaller than the high quality cable. Indoor fiber optic cable, usually made of high quality flame retardant PVC, the appearance should be smooth, bright, good flexibility, easy to peel; and otherwise poor skin finish, easy and tight buffer fiber, aramid adhesion phenomenon.

3. Steel, aluminum. Steel, aluminum cable is mainly used to protect the fiber from mechanical side pressure, moisture and other effects, better cable typically use chrome-plated steel strip. Low quality fiber optic cable to only one side done ordinary iron rust treatment, or black (uncoated steel), instead of chrome-plated steel strip, over time, the cable will appear corroded, fiber optic hydrogen loss also aggravate andits easy separation do not constitute the sheath bonded sheath tide also very poor performance; of some places tinned strip instead of chrome-plated steel strip, tin-plated surface of the strip, the bubble is inevitable, so in humid, prone to corrosion under the conditions of the atmosphere and surface condensation or water, especially under acidic conditions, corrosion faster. The tin plating layer is poor in heat resistance, melting at 232 degrees Celsius, only the application of due to squeeze sheaths when the high temperature, such that the peel strength uncertainty affect the cable anti-surge performance. Chromium melting point of 1900 degrees Celsius, chemically very stable at room temperature in air or water will not rust, corrosion resistance, very good resistance to environmental performance, easily oxidized due to surface passivation layer is formed so good. Aluminum generally failed thermal paste method coated aluminum instead of cast qualified coated aluminum, which also affect cable performance.

4. Steel wire. The steel wire in the fiber optic cable mainly used to protect optical fiber from the mechanical tension. Good cable typically use for phosphating steel wire, high modulus short-term tension 1500N and 3000N. And low-quality fiber optic cable will be a very small diameter wire or ordinary steel instead of the one hand, easy to rust; On the other hand, is far less than the tensile strength 1500N construction may strain the fiber. High modulus phosphide stell wire is generally gray color, good toughness, not easy to bend; the alternative wire generally pinch in your hand can be bent a long time, the two rust fracture hanging cable box. 

5. Loose tube. The installed fiber loose tube fiber optic cable is generally used polymer PBT material (poly (butylene terephthalate)), this loose tube, high strength, no deformation, anti-aging. Poor quality loose tube fiber optic cable is sometimes replaced with other materials, diameter thin, hand pinch flat, no different from drinking straw, can not afford the protective effect of the fiber.

6. Waterproof tape. Fiber optic cable with waterproof tape or water blocking yarn through the inside of the product showed a uniform distribution of high water-absorbing resin has strong water absorption, under the combined effect of the osmotic pressure, affinity, rubber elastic, super absorbent resin inhalation several times the weight of water. Further, the water-blocking powder once with water swollen gel will instantly, regardless to its much pressure is applied, moisture nor is extruded. Thus, with a water-absorbent resin containing water-blocking tape coated cable core, in case the outer wall of the fiber optic cable is damaged, the wound portion of the high water-absorbent resin to play due to expansion of the sealing effect, can prevent the entry of water to a minimum. Low-quality fiber optic cable commonly used non-woven fabric or paper tape, once the cable jacket is damaged, the consequences will be very serious.

7. Kevlar. Kevlar is a high-strength chemical fiber, most in the field of military-industrial complex, a bullet-proof vest is the producer of this material. It is a patented product of DuPont, is the major cost components of the indoor fiber optic cable, tight buffer fiber indoor cable is mainly used to protect against mechanical tension. Due to Kevlar high cost, poor quality of indoor fiber optic cable outer diameter is generally made ​​very thin, so you can by reducing the few shares aramid cost savings, or use an appearance similar to Kevlar polyester yarn instead (more common) polyester yarn almost can not bear what tension. So that the optical fiber laying easily strain or pull off.

8. Optical fiber. The fiber optic cable core raw materials, the good cable commonly used manufacturers of high quality core. Low-quality fiber optic cable is usually lower fiber and unsolicited fiber, these fibers due to the complex sources, quality is difficult to guarantee, sometimes multimode fiber often mixed with single-mode fiber, and the general lack of small factories necessary testing equipment, not fiberquality of judgment, more so the quality is difficult to be guaranteed. In addition, some bought with cheap short segment later cabled fiber splicing. The naked eye can not distinguish this fiber, the problems often encountered in the construction are: low transmission rate, short distance, fiber attenuation, not and pigtail docking, lack of flexibility, easily broken plate filament when even a single fiber a multi-mode, the other end is single-mode.

9. Coloring ink. Distinguish fiber in order to facilitate the construction of national standards be with bright color and high-quality fiber optic cable are standard in high quality ink colored fiber loose tube, the color is very clear and easy to fall off, while the low quality fiber optic cable is used poor qualityink coloring or simply coloring and inferior ink colors are vivid and sometimes easy to dissolve in the fiber paste the color can not be distinguished, not colored even more great inconvenience to the construction.

10. Product packaging. The fiber optic cable commonly used packaging wooden plate or the iron wooden tray into the shaft, the outside of the plate sealed wooden seal plate to ensure that the bulky fiber optic cable throughout the transit force, bending radius conditions within the scope of the standard requirements. Low-quality fiber optic cable in order to save costs, generally very poor packaging tray, transported to the destination is almost close to falling apart, and some simply do not have the disk, look around cable is shipped, or the disc do not have to seal the wood.

In summary, optical fiber cable real good or bad from the structural design, integrated the difference between the pros and cons of the timber material and production process. Because the cable is not yet a large number of popular, low-quality products, while a lot of hidden dangers, many users even integrators do not understand the line is still used regardless of settings.

It is for this reason that the negative impact of low-quality fiber optic cable industry will be even greater, because the fiber optic cable itself, its value is not significant, but the cost of laying process (direct burial, aerial, wearing a tube) were truly amazing.and time-consuming, coupled with its entire communication link based medium, so if there are problems, no matter how expensive your hardware devices at both ends of the high-end, the entire system will be, without exception, completely paralyzed, will be a very long period of repair, resulting in the loss of thousands of times the difference between the pros and cons.

If you want to know more about breakout fiber cable, hybrid cable or fiber optic cable cost, please visit our website.

Breakout Fiber Optic Cable

Breakout fiber cable also called fanout cable, is an optical fiber cable containing several jacketed simplex optical fibers packaged together inside an outer jacket. They can be easily divided into individual fiber lines as each fiber is individually reinforced. This differs from distribution style cable, in which tight-buffered fibers are bundled together, with only the outer jacket of the cable protecting them. The design of breakout-style cable adds strength for ruggedized drops, however the cable is larger and more expensive than distribution-style cable. Breakout cable is suitable for short riser and plenum applications and also for use in conduits, where a very simple cable run is planned to avoid the use of any splice box or spliced fiber pigtails.

Because each fiber is individually reinforced, the breakout cable can be easily divided into individual fiber lines. Each simplex cable within the outer jacket may be broken out and then continue as a patch cable, for example in a fiber to the desk application in an office building. This enables connector termination without requiring special junctions, and can reduce or eliminate the need for fiberoptic patch panels or an optical distribution frame. Breakout cable requires terminations to be done with simple connectors, which may be preferred for some situations. A more common solution today is the use of a fanout kit that adds a jacket to the very fine strands of other cable types.

Breakout cables normally contain a ripcord, two non-conductive dielectric strengthening members (normally a glass rod epoxy), an aramid yarn, and 3 mm buffer tubing with an additional layer of Kevlar surrounding each fiber. The ripcord is a parallel cord of strong yarn that is situated under the jacket(s) of the cable for jacket removal.

A breakout fiber optic cable offers a rugged cable design for shorter network designs. This may include LANs, data communications, video systems, and process control environments.

A tight buffer design is used along with individual strength members for each fiber. This permits direct fiber optic cable termination without using breakout kits or splice panels. Due to the increased strength of Kevlar members, breakout fiber optic cables are heavier and larger than the telecom types with equal fiber counts.

The term breakout defines the key purpose of fiber optic breakout cable. That is, one can “break out” several fibers at any location, routing other fibers elsewhere. For this reason breakout cables are, or should be, coded for ease of identification.

Because fiber optic breakout cable is found in many building environments where codes may require plenum cables, most breakout cables meet the NEC’s requirements. The cable is available in a variety of designs that will accommodate the topology requirements found in rugged environments. Fiber counts from simplex to 256 are available.

If you would like to purchase our breakout fiber optic cable or want to learn about outdoor fiber optic cable or fibre optic cable specification, please visit our website.

Introducing Two Basic Cable Design

There are two basic cable design, loose tube cable and tight buffered cable. Loose-tube cable, used in the majority of outside-plant installations in North America, and tight-buffered cable, primarily used inside buildings.

The modular design of loose-tube cables typically holds up to 12 fibers per buffer tube with a maximum per cable fiber count of more than 200 fibers. Loose-tube cables can be all-dielectric or optionally armored. The modular buffer-tube design permits easy drop-off of groups of fibers at intermediate points, without interfering with other protected buffer tubes being routed to other locations. The loose-tube design also helps in the identification and administration of fibers in the system.

Single-fiber tight-buffered cables are used ase pigtails, patch cords and jumpers to terminate loose-tube cables directly into opto-electronic transmitters, receivers and other active and passive components.

Multi-fiber tight-buffered cables also are available and are used primarily for alternative routing and handling flexibility and ease within buildings.

Loose Tube Cable

In a loose-tube cable design, color-coded plastic buffer tubes house and protect optical fibers. A gel filling compound impedes water penetration. Excess fiber length (relative to buffer tube length) insulates fibers from stresses of installation and environmental loading. Buffer tubes are stranded around a dielectric or steel central member, which serves as an anti-buckling element.

The cable core, typically surrounded by aramid yarn, is the primary tensile strength member. The outer polyethylene jacket is extruded over the core. If armoring is required, a corrugated steel tape is formed around a single jacketed cable with an additional jacket extruded over the armor.

Loose-tube cables typically are used for outside-plant installation in aerial, duct and direct-buried applications.

Tight-Buffered Cable

With tight-buffered cable designs, the buffering material is in direct contat with the fiber. This design is suited for “jumper cables” which connect outside plant cables to terminal equipment, and also for linking various devices in a premises network.

Multi-fiber, tight-buffered cables often are used for intra-building, risers, general building and plenum applications.

The tight-buffered design provides a rugged cable structure to protect individual fibers during handling, routing and connectorization. Yarn strength members keep the tensile load away from the fiber.

As with loose-tube cables, optical specifications for tight-buffered cables also should include the maximum performance of all fibers over the operating temperature range and life of the cable. Averages should not be acceptable.

If you’d like to purchase or learn more about our loose tube cable, breakout fiber cable or hybrid cable, simply visit our offical website or call our customer service.

The Commonly Available Optical Fiber Cable Types

As uses for optical fiber have become more varied, manufacturers have begun producing, cables to meet specific needs. Cable configurations vary based on the type of use, the location, and future expansion needs, and it is likely that more will be created as future applications emerge.

Bear in mind that different cable arrangements are variations on a theme. Different combinations of buffer type, strength members, and jackets can be used to create cables to meet the needs of a wide variety of industries and users.

Let’s look at some of the commonly available optical fiber cables.

Breakout Cable

Breakout cables are used to carry optical fibers that will have direct termination to the equipment, rather than being connected to a patch panel. Breakout fiber cable consist of two or more simplex cables bundled with a strength member and central member covered with an outer jacket. These cables are ideal for routing in exposed trays or any application requiring an extra rugged cable that can be directly connected to the equipment.

Distribution cable

When it is necessary to run a large number of optical fibers through a building, distribution cable is often used. Distribution cable consists of multiple tight-buffered fibers bundled in a jacket with a strength member. These cables may also feature a dielectric central member to increase tensile strength, resist bending, and prevent the cable from being kinked during installation.

Distribution cables are ideal for inter-building routing. Depending on the jacket type they may be routed through plenum areas or riser shafts to telecommunications rooms, wiring closets, and workstations. The tight-buffered optical fibers are not meant to be handled muchbeyond the initial installation, because they do not have a strength member and jacket. Distribution cables may carry up to 144 individual tight-buffered optical fibers, many of which may not be used immediately but allow for future expansion.

Ribbon Cable

Ribbon cable is a convenient solution for space and weight problems. The cable contains fiber ribbons, which are actually coated optical fibers placed side by side, encapsulated in Mylar tape similar to a miniature version of wire ribbons used in computer wiring. A single ribbon may contain 4, 8, or 12 optical fibers. These ribbons can be stacked up to 22 high.

Because the ribbon contains only coated optical fibers, this type of cable takes up much less space than individually buffered optical fibers. As a result, ribbon cables are denser than anyother cable design. They are ideal for applications where limited space is available, such as in an existing conduit that has very little room left for an additional cable.

Ribbon cables come in two basic arrangements. In the loose tube ribbon cable, fiber ribbons are stacked on top of one another inside a loose-buffered tube. This type of arrangement can hold several hundred fibers in close quarters. The buffer, strength members,and cable jacket carry any strain while the fiber ribbons move freely inside the buffer tube.

The jacketed ribbon cable looks like a regular tight-buffered cable, but it is elongated to contain a fiber ribbon. This type of cable typically features a small amount of strength member and aripcord to tear through the jacket.

While ribbon fiber provides definite size and weight savings, it does require special equipment and training to take advantage of those benefits. Connectors, strippers, cleavers, and fusion splicers must all be tailored to the ribbon fiber. For these reasons, ribbon fiber may not be the best solution in all situations.

Armored Cable

Armored cable can be used for indoor applications and outdoor applications. An armored cable typically has two jackets. The inner jacket is surrounded by the armor and the outer jacket or sheath surrounds the armor.

An armored cable used for outdoor applications is typically a loose tube fiber construction designed for direct burial applications. The armor is typically a corrugated steel tape surrounded by an outer polyethylene jacket. This combination of outer jacket and armor protects the optical fibers from gnawing animals and the damage that can occur during direct burial installations.

Armored cable used for indoor applications may feature tight-buffered or loose-buffered optical fibers, strength members, and an inner jacket. The inner jacket is typically surrounded by a spirally wrapped interlocking metal tape armor. This type of armor is rugged and provides crush resistance. These cables are used in heavy traffic areas and installations that require extra protection, including protection from rodents.

Hybrid Cable

Hybrid cable, as applied to fiber optics, combines multimode and single-mode optical fibers in one cable. Hybrid cable should not be confused with composite cable, although the terms have been used interchangeably in the past.

Composite Cable

Composite Cable, as defined by the National Electrical Code (NEC), is designed to carry both optical fiber and current carrying electrical conductors in the same run. This composite cable consists of optical fibers along with twisted-pair wiring typical of telephone wiring. This arrangement is convenient for networks that carry fiber optic data and conventional telephone wiring to the same user. Composite cable also provides installers with a way to communicate during fiber installation and provides electrical power to remote equipment, such as repeaters, along the fiber’s route.

Simplex Cordage

Simplex cordage, consists of a single optical fiber with a tight buffer, an aramid yarn strength member, and a jacket. Simplex cordage gets its name from the fact that, because it is a single fiber, it is typicalyy used for one-way, or simplex, transmission, although bidirectional communications are possible using a single fiber.

Duplex Cordage

Duplex cordage, also known as zipcord, is similar in appearance to household electrical cords. Duplex cordage is a convenient way to combine two simplex cords to achieve duplex, or two-way, transmissions without individual cords getting tangled or switched around accidentally.