How to Build Your Data Center?

Today’s data centers are complex. It houses dozens of diverse bandwidth-intensive devices tightly such as servers, clustered storage systems and backup devices, all of which are interconnected by cables. Therefore, the importance of a reliable, scalable and manageable cabling infrastructure is self-evident. Then how to build a data center which can meet today and future growth? This article may give you some advice about it.

5

How to Plan?

As data center houses a number of servers which are connected by numerous cables, it’s important to make it organized. If not, the last thing you will encounter is a tangled mass of cables that make it impossible to determine how severs are connected. Let alone to build a high-efficiency data center. Here are some tips on how to start your data center.

Using a Structured Approach

Using a structured approach to make data center cabling means designing cable runs and connections to facilitate identifying cables, troubleshooting and planning for future changes. In contrast, spontaneous or reactive deployment of cables that only suits immediate needs often makes it difficult to diagnose problems and to verify proper connectivity.

Using Color to Identify Cables

Colors can provide quick visual identification, which simplify management and can save your time when you need to trace cables. Color coding can be used ports on patch panels, color sleeves, connectors and fiber cables.

Establishing a Naming Scheme

Once the physical layouts of a data center are defined, applying logical naming will make it easy to identify each cabling component. Effective labeling brings better communications and can reduce unnecessary problems when locating a component. The suggested naming scheme often includes Building, Room, Grid Cell, Workstation, etc.

How to Select the Necessary Cabling Components?

After knowing how to construct the backbone network of a data center, selecting a right and suitable cabling components can quickly become overwhelming. Each cabling component has its own advantages and disadvantages. So it’s important to get the right equipment purchased and deployed to avoid future cabling problems. Below are some tips on how to choose corresponding cabling components.

Patch Panel

Patch panels enable easy management of patch cables and link the cabling distribution areas. How to choose a suitable one? First, the patch panels which allow different cable connectors to be used in the same patch panel are a good choice. Second, when choosing a patch panel, the main types of connectors within one panels are LC for fiber and RJ45 for copper. Finally, patch panels with colored jacks or bezels allow easy identification of the ports also can be taken into consideration.

angledpatchpanels

Cable Manager

Cable managers offer a neat and proper routing of the patch cables from equipment in racks and protect cables from damage. Generally, there are horizontal and vertical cable managers. And there are different requirements of these cable managers. When choosing horizontal cable managers, it’s essential to make sure that certain parts of the horizontal cable manager are not obstructing equipment in the racks and that those individual cables are easy to be added or removed. While choosing vertical cable managers, additional space used to manage the slack from patch cords is needed.

cable-management-panel

Cable Ties

Cable ties are used to hold a group of cables together or fasten cables to other components. Using cables ties can avoid crushing the cables and impacting cable performance. Velcro cable ties provided by Fiberstore are perfect for controlling and organizing wires, cords, and cables. Besides, using ties will help you identify cables later and facilitate better overall cable management.

cable-ties

Of course, except for what have been mentioned above, there are other cabling components which need to be selected carefully such as cable labels, backbone cables and so on.

What Should Be Paid Attention to When Installation?
  • Cabling installations and components should be compliant with industry stands.
  • Use thin and high-density cables wherever possible, allowing more cable runs in tight spaces.
  • Remove abandoned cables which can restrict air flow and may fuel a fire.
  • Keep some spare patch cables. The types and quantity can be determined from the installation and projected growth. Try to keep all unused cables bagged and capped when not in use.
  • Avoid routing cables through pipes and holes, which may limit additional future cable runs.
Summary

Building a data center is not an easy task. Each step and component selecting during installations need carefulness and patience. FS.COM provides all cable products including structured cables, patch panels, cable ties, labels and other tools needed in data center installation. All of them will maximize the efficiency and reliability of the data center installation.

How to Clean the Data Center?

Dust and dirt in data center could be a nightmare that troubles most of the telecom engineers. Now and then as they try to put their fingers on a distribution cabinet or a patch panel in a data center, the fingers are always stained by dust or dirt. However, this annoying situation is not rare for those engineers working in the field of telecommunication. Some of them may have realized the importance of cleanliness in data center, but they seldom take action to remove the dust and dirt. It means people simply attach less importance to keep the data center clean enough. Some contaminants can easily be seen or checked by eyes and hands, but there are still myriads of them existing inside the equipment which may lead to disastrous consequences such as overheating as well as various network failures if no proper action was taken to clean.

The Importance of Cleaning Data Center

Imagine what would happen if there is no regular cleaning in the data center? As it was mentioned above, the most direct result of contaminant is overheating. Since dust and pollutants in the data center are usually light-weight, If there is air flow, dust or dirt will move with it. The cooling system of the data center is depending largely on server fan which can bring the dust and dirt into the cooling system. The accumulation of these contaminant can cause fan failure or static discharge inside equipment. The heat dissipation will need more time and heat emission efficiency is limited. The following picture shows the contaminant at a server fan air intake that can explain this phenomenon.

the contaminant at a server fan air intake

As the cooling system is affected by the dust and dirt, the risk of the data center increases largely. Contaminants will capture every possible place in the data center where they are capable of. In addition, data center nowadays relies heavily on electronic equipment and fiber optic components like fiber optic connectors, which are very sensitive to contaminants. Problems like power failures, loss of data and short circuit might happen if the contaminants are not removed completely. What’s worse, short circuit might cause fire in the data center, which could lead to irreparable damage. The following picture shows the data center after a fire. It is really a disaster for the data center managers.

the data center after a fire

Dust and dirt can also influence the life span of data center equipment as well as their operation. The uptime of a data center may decrease if there are too many contaminants. Cleaning the data center regularly would help to reduce data center downtime and extend the life span of data center infrastructure equipment. It is proved to be cost efficient and energy saving comparing with restarting the data center or repairing the equipment.

Furthermore, data center cleanliness can offer an aesthetic appeal to a clean and dust-free environment. Although it is not the main purpose, a clean data center can present a more desirable working environment for telecom engineers, especially for those who need to install cable under a raised floor or working overhead racks and cabinet. No one would reject a cleaning data center.

Contaminants Sources of Data Center

There is no doubt that data center cleanliness is necessary. But how to keep the data center clean? Before taking action, source of contaminants in the data center should be taken into consideration. Generally, there are two main sources. One is inside the data center, and the other is from outside of the data center. The internal contaminants are usually particles from air conditioning unit fan belt wear, toner dust, packaging and construction materials, human hair and clothing as well as zinc whiskers from electroplated steel floor plates. The external sources of contamination include cars, electricity generation, sea salt, natural and artificial fibers, plant pollen and wind-blown dust.

Data Center Cleaning and Contaminants Prevention

Having known where the dust and dirt come from, here offers some suggestions and tips to reduce the contaminants.

  • Reduce the data center access. It is recommended that limited access to only necessary personnel can reduce the external contaminants.
  • Sticky mats should be used at the entrances to the raised floor, which can eliminate the contaminants from shoes largely.
  • Never unpack new equipment inside the data center, establish a staging area outside the data center for unpacking and assembling equipment.
  • No food, drink or smoking in the data center.
  • Typically all sites are required to have fresh air make-up to the data center, remember to replace on a regular basis.
  • Cleaning frequency depends on activity in the data center. Floor vacuuming should be more often as the traffic in the data center increased.
  • Inspect and clean the fiber optic components regularly, especially for fiber optic connector and interface of switches and transceivers.
  • The inside and outside of racks and cabinets should be cleaned.

Conclusion

Data center operates like an information factory nowadays as it processes countless data and information as well. Therefore, the cleanliness of the data center becomes increasingly important. If this essential “factory” is polluted by dust and dirt, it will eventually fail to provide reliable and qualified services. Not to mention that a clean data center could ensure a much more extended life span of equipment and applications thus to effectively save a great amount of money for the maintenance.

SMF or MMF, Which to Choose for Date Center Cabling?

It is critically important to choose the suitable cabling plant for data center connectivity, because the wrong decision may leave a data center incapable of supporting future grown, requiring an extremely costly optical cable plant upgrade to move to higher speeds. In the past, multimode fiber (MMF) has been widely deployed in data center for many years because of the high cost of single mode fiber (SMF). However, the price difference between SMF and MMF has been largely negated as technologies have evolved. With cost no longer the dominant decision criterion, operators can make architectural decisions based on performance. So SMF or MMF, which should be chosen for data center cabling? Keep reading and you’ll find the answer.

MMF – Unable to Reach the Distance Need

Many data center operators who deployed MMF OM1/OM2 fiber a few years ago are now realizing that these MMF cannot support higher transmit rates like 40 GbE and 100 GbE. So some MMF users have been forced to add later-generation OM3 and OM4 fiber to support standards-based 40GbE and 100GbE interfaces. But the physical limitations of MMF mean that the distance between connections must decrease when data traffic grows and interconnectivity speeds increase. Deploying more fibers in parallel to support more traffic is the only alternative. So the limitations of MMF have become more serious when it has been widely deployed for generations. The operators must weigh unexpected cabling costs against a network incapable of supporting new devices.

MMF

SMF – A Viable Alternative

Due to the cost of the pluggable optics required, previously organizations were reluctant to implement SMF inside the data center, especially compared to MMF. However, newer silicon technologies and manufacturing innovations are driving down the cost of SMF pluggable optics. Fiber optic transceivers with Fabry-Perot edge emitting lasers (single-mode) are now comparable in price than power dissipation to VCSEL (multimode) transceivers. Moreover, SMF eliminates network bandwidth constraints, where MMF cable plants introduce a capacity-reach tradeoff. This allows operators to take advantage of higher-bit-rate interfaces and wave division multiplexing (WDM) technology to increase by three orders of magnitude the amount of traffic that the fiber plant can support over longer distances. All these factors make SMF a more viable option for high-speed deployment in data center.

SMF

Comparison Between SMF and MMF

With 40 GbE and 100 GbE playing roles in some high-bandwidth applications, 10 GbE has become the predominant interconnectivity interface in large data centers. Put it simply, the necessity for fiber cabling supporting higher bit rates over extended distances is here today. With that in mind, the most significant difference between SMF and MMF is that SMF provides a higher spectral efficiency than MMF. It means that SMF supports more traffic over a single fiber using more channels at higher speeds. This is in stark contrast to MMF, where cabling support for higher bit rates is limited by its large core size. As a matter of fact, in most cases, currently deployed MMF cabling is unable to support higher speeds over the same distance as lower-speed signals.

Summary

The tradeoff between capacity and reach is important as operators consider their cabling options. Network operators need to assess the extend to which they believe their data centers are going to grow. For environments where users, applications, and corresponding workload are all increasing, SMF offers the best future proofing for performance and scalability. And because of fundamental changes in how transceivers are manufactured, those benefits can be attained at prices comparable to SMF’s lower performing alternative.

Prefabricated Modular Data Center – an Extremely Agile and Cost-efficient Option

Prefabricated Modular Data CenterWhether it’s an enterprise or multi-tenant (co-location) facility, the data center is fast becoming an organization’s most valuable strategic asset. Its ability to handle immense volumes of data, provide highly reliable IT services for users and quickly adapt to the increasing demands of a dynamic environment can make or break a business. As a result, IT and facilities professionals are constantly looking to make their data centers more agile and efficient.

A typical data center is a traditional brick-and-mortar facility that can range from a few thousand to a million square feet or more. A data center of this type is often pre-designed to house all of the necessary racks, power distribution, cooling, cabling, fire suppression, and physical security systems needed to support IT services over the next 10 to 15 years. These facilities can come with a hefty price tag in the hundreds of millions of dollars and take two to three years to plan, design and build.

So, what’s the problem? As IT technologies rapidly evolve and virtualization and cloud computing complicates traditional capacity planning, a brick-and-mortar data center designed today could conceivably become obsolete before it is ever deployed. Its power, cooling and IT “white space” requirements might have been specified by the business at a certain point in time, but by the time the facility actually goes live, the needs of the business—and the data center technologies available to support the business—may have irrevocably changed. This constant demand for change results in stranded or inadequate space, power, or cooling, and leaves traditional data center owners trapped in a perpetual and expensive retrofit cycle while attempting to save their initial capital investment.

As a result, many data center owners and operators are exploring alternatives to traditional data center design-and-build.

Prefabricated Modular Data CenterWithin the last several years, the market has warmed to the concept of the prefabricated modular data center. A modular data center is a concept that uses prefabricated modules—built and tested at a factory, disassembled, shipped to a site and then reassembled to deliver data center white space, power and cooling infrastructure. A modular data center can be set up and operational within 14 to 20 weeks instead of two to three years. Also, as business capacity needs or technologies change, new modules addressing the change can be quickly and cost-efficiently added or existing solutions pre-engineered for upgrading can be seamlessly modified.

This approach enables businesses to focus on meeting their current and very near term data center capacity needs, rather than attempting to project and build for their anticipated long-term demand. It creates a purpose-built data center infrastructure that’s built to fit from the start.

The benefits of a prefabricated modular data center include:

  • Significant capital expenditure savings in design, planning, construction and infrastructure
  • Lower power, cooling, and operational expenses due to infrastructure right sizing, engineering out complexity and the usage of hyper-efficient innovative cooling designs
  • The ability to future-proof the data center by easily upgrading whenever more capacity is needed

These benefits are why the prefabricated modular data center is an extremely agile and cost-efficient option for data center owners and operators looking beyond traditional approaches to address rapid changes in business and technology needs today and tomorrow.