Are You Ready to Install White Box Switches in Your Network?

With the development of Cloud services and networking, FS has introduced a series of high performance 40G/100G white box switches. The goal is to provide Web scale organizations and service providers more control and flexibility in their data center networks. So what are white box switches? White box switches refers to the ability to use ‘generic,’ off-the-shelf switching (or white box switching) and routing hardware, in the forwarding plane of a software-defined network (SDN). Moreover, white box switches rely on an operating system (OS), which may come already installed or can be purchased from a software vendor and loaded separately, and then integrate with the deploying organization’s Layer 2/Layer 3 topology and support a set of basic networking features. On the whole, OS is an integral part of white box switches, and the rise of SDN has brought white box switches into the public eye. Next, let’s take a closer look at white box switches.

FS 40G100G White Box Switches

OS Defines White Box Switches

White box switches are useless without software, because every switch needs an operating system. The OS needs to seamlessly integrate with existing L2/L3 topology and support a basic set of features. A common operating system for white box switches is Linux-based, because many open and free Linux tools are available, which can help administrators customize the switches to their needs. Typically, a white box switch may come pre-loaded with minimal software or it may be sold as a bare metal device. The advantage of the white box switches is that switches can be customized to meet an organization’s specific business and networking needs.

FS Network OS

However, how to put the OS on the white box switches? Some vendors sell a complete solution with the OS that is already installed on the white box, while others set up distributors to provide the bare metal devices that the OS is directly brought from the software vendor. Both of these two approaches are feasible, depending on the scale of the deployment and the desire for the network.

SDN & White Box Switches

Beyond the operating system, white box switches are more valuable if they interact with SDN controllers. And the widespread implementation of SDN has boosted the use of white box switches. SDN is an approach to design, build and manage networks, which can separate the network’s control and forwarding planes. In result, the network control will become directly programmable and the underlying infrastructure will be abstracted for applications and network services. The goal of SDN is to enable cloud and network engineers and administrators to respond quickly to changing business requirements via a centralized control console. At the same time, the switches in SDN environment rely on software-based network function virtualization (NFV), which offers great convenience for the users of white box switches. Because white box switch allows its customers to choose the best suitable operating system for themselves. And in the future, most white box switches will function in an SDN environment in which the SDN controller is making forwarding and control-plane decisions from a centralized point for all switches in the network.

sdn

The Growing Market for White Box Switches

In general, the data center Ethernet switch market has seen tremendous growth and investment over the past years. The Layer 2-3 Ethernet switch market is expected to exceed $25 billion in 2019, according to Dell’Oro Group. What’s more, some high-end users are tired of vendor lock-in switches, and they might be ready to try a white box switch to get what they want. White box switches can customize the system to limit unneeded processes and concentrate the processing power of the switch on the important features, so it leads to a customized switch platform that provides perfect performance for a narrow range of uses. Customers with highly unique support needs will also benefit from white box switches. Through the separation of software and hardware, customers can obtain different support levels for hardware and software.

FS 40G/100G White Box Switches Solutions

FS 40G/100G white box switches are based on IPinfusion’s ZebOS with integration of Layer 2 to Layer 4 packet processing engine, traffic management and fabric interface. The aim is to achieve flexibility, scalability, efficiency and cost effectiveness in data center networks. Furthermore, the operating systems of these switches are developed on the basis of Linux and similar to Arista EOS. Last but not least, all the 40G/100G white box switches in FS support SDN function which can make networks more affordable and easier to manage.

fs-40g-100g-white-box-switches

All in all, the S9000 series white box switches support current and future data center requirements, which is ideally suited for data center environments in either Leaf or Spine deployments. They provide superior low latency and power efficiency in a clean PHYless design, while offering high reliability features such as redundant and hot swappable power supplies and fans in forward and reverse airflow configurations. And they provide QSFP+ ports, which enable flexible choices of port speed providing unparalleled flexibility and the ability to seamlessly transition data centers to the next generation of Ethernet performance.

Summary

White box switches can be deployed either in the data center or in the access network. Hyperscale data centers can deploy white box switches to reduce capital expenditures and leverage open SDN tools to improve time to deployment and automation. If you want to deploy white box switches with lower cost and great flexibility, welcome to contact us via www.fs.com.

Tips to Simplify Your Data Center Management

Data center houses a network’s most critical systems and is vital to the continuity of daily operations. Many of us have seen what it looks like. As we all know, the more complex a data center is, the more difficult it can be to ensure efficiency and orderly management—not only of the systems and equipment, but of the working staff as well. How to simplify data center management? This post may give you the answer.

data-center

When several different types of product, tools and resources are used to support a network, complication cannot be avoided. With the rapid development of society, many business demands require the data center to operate quickly and effectively. In order to achieve this goal, various mix-and-match occur, which lead to a complicated data center. Here are several tips to simplify data center management and make it work efficiently.

Emphasize Standardization

With the fast advancement of communications, equipment used in data centers is replaced frequently. Therefore, product standardization is something to keep in mind when upgrading and replacing the equipment, as well as the infrastructure that supports it. By utilizing standardized data center hardware, maintenance can be finished smoother and faster with common approaches, which save time, resources and money.

Choosing Easy Installation and Space-saving Components

A complicated data center environment makes it difficult to identify the root cause of errors or misconfigurations. So selecting some easy installation and space-saving products means shorter installation times, less training time for staff and lower maintenance costs. There are many examples of products that make installation and maintenance simpler for data centers. Here are some examples.

Designed to deliver maximum connectivity performance in a minimal footprint according to standards, LC uniboot patch cable uses a single, unified jacket for both fibers. With this unique structure, it allows up to 68% space-saving in cabling volume, offering easier maintenance and operability. Besides, LC fiber optic connectors can offer higher density and performance in most environments, which makes it popular in many applications.

push-pull-tab-patch-cable

High Density Push-pull Tab Fiber Optic Patch Cable

Push-pull tab patch cable has a special “pull” tab design that enables the connector to be disengaged easily from densely loaded panels without the need for special tools, allowing users easy accessibility in tight areas when deploying in data center applications. With this unique design, high-density fiber cables, such as MPO/MTP fiber cables, offer high density connections between network equipment in telecommunication rooms and data centers. They can be easily installed or removed with one hand, which improve efficiency greatly.

High Density Fiber Enclosure

Fiber enclosure is designed to house, organize and manage fiber connections, terminations, and patching in all applications, providing the highest fiber densities and port counts in the industry contributing to better rack space utilization and minimizing floor space. Loaded with different numbers of FAPs, HD fiber enclosures offer a high-density flexibility for cabling installations of data centers to maximize rack space utilization and minimize floor space.

4u-fiber-enclosure

Of course, except for the cables and enclosures mentioned above, other small components in data centers also cannot be ignored. For instance, cable ties and labels also play a critical role in cabling installations of data centers. In a word, every detail should be taken into consideration when managing a data center.

Preparing for Future-proof Cabling

As we have mentioned above, under this rapid development environment, data centers should be equipped to handle current needs while offering a clear path for future technology requirements. Complex data centers can be simplified when components are deployed that allow you to grow and migrate to new systems in the future without compromising performance or reliability. For example, solutions that offer support for both traditional ST and SC and modern LC and MPO applications support cost-effective, simpler migration to 40G and 100G applications with only a simple cassette or adapter frame change.

Summary

When data center processes and components are simplified, installation and maintenance become easier and less costly, staff resources are freed up for more strategic tasks, troubleshooting becomes less cumbersome and migration is also more easily achieved. All components mentioned above are available in FS.COM. Welcome to visit our website for more detailed information.

How to Build Your Data Center?

Today’s data centers are complex. It houses dozens of diverse bandwidth-intensive devices tightly such as servers, clustered storage systems and backup devices, all of which are interconnected by cables. Therefore, the importance of a reliable, scalable and manageable cabling infrastructure is self-evident. Then how to build a data center which can meet today and future growth? This article may give you some advice about it.

5

How to Plan?

As data center houses a number of servers which are connected by numerous cables, it’s important to make it organized. If not, the last thing you will encounter is a tangled mass of cables that make it impossible to determine how severs are connected. Let alone to build a high-efficiency data center. Here are some tips on how to start your data center.

Using a Structured Approach

Using a structured approach to make data center cabling means designing cable runs and connections to facilitate identifying cables, troubleshooting and planning for future changes. In contrast, spontaneous or reactive deployment of cables that only suits immediate needs often makes it difficult to diagnose problems and to verify proper connectivity.

Using Color to Identify Cables

Colors can provide quick visual identification, which simplify management and can save your time when you need to trace cables. Color coding can be used ports on patch panels, color sleeves, connectors and fiber cables.

Establishing a Naming Scheme

Once the physical layouts of a data center are defined, applying logical naming will make it easy to identify each cabling component. Effective labeling brings better communications and can reduce unnecessary problems when locating a component. The suggested naming scheme often includes Building, Room, Grid Cell, Workstation, etc.

How to Select the Necessary Cabling Components?

After knowing how to construct the backbone network of a data center, selecting a right and suitable cabling components can quickly become overwhelming. Each cabling component has its own advantages and disadvantages. So it’s important to get the right equipment purchased and deployed to avoid future cabling problems. Below are some tips on how to choose corresponding cabling components.

Patch Panel

Patch panels enable easy management of patch cables and link the cabling distribution areas. How to choose a suitable one? First, the patch panels which allow different cable connectors to be used in the same patch panel are a good choice. Second, when choosing a patch panel, the main types of connectors within one panels are LC for fiber and RJ45 for copper. Finally, patch panels with colored jacks or bezels allow easy identification of the ports also can be taken into consideration.

angledpatchpanels

Cable Manager

Cable managers offer a neat and proper routing of the patch cables from equipment in racks and protect cables from damage. Generally, there are horizontal and vertical cable managers. And there are different requirements of these cable managers. When choosing horizontal cable managers, it’s essential to make sure that certain parts of the horizontal cable manager are not obstructing equipment in the racks and that those individual cables are easy to be added or removed. While choosing vertical cable managers, additional space used to manage the slack from patch cords is needed.

cable-management-panel

Cable Ties

Cable ties are used to hold a group of cables together or fasten cables to other components. Using cables ties can avoid crushing the cables and impacting cable performance. Velcro cable ties provided by Fiberstore are perfect for controlling and organizing wires, cords, and cables. Besides, using ties will help you identify cables later and facilitate better overall cable management.

cable-ties

Of course, except for what have been mentioned above, there are other cabling components which need to be selected carefully such as cable labels, backbone cables and so on.

What Should Be Paid Attention to When Installation?
  • Cabling installations and components should be compliant with industry stands.
  • Use thin and high-density cables wherever possible, allowing more cable runs in tight spaces.
  • Remove abandoned cables which can restrict air flow and may fuel a fire.
  • Keep some spare patch cables. The types and quantity can be determined from the installation and projected growth. Try to keep all unused cables bagged and capped when not in use.
  • Avoid routing cables through pipes and holes, which may limit additional future cable runs.
Summary

Building a data center is not an easy task. Each step and component selecting during installations need carefulness and patience. FS.COM provides all cable products including structured cables, patch panels, cable ties, labels and other tools needed in data center installation. All of them will maximize the efficiency and reliability of the data center installation.

How to Clean the Data Center?

Dust and dirt in data center could be a nightmare that troubles most of the telecom engineers. Now and then as they try to put their fingers on a distribution cabinet or a patch panel in a data center, the fingers are always stained by dust or dirt. However, this annoying situation is not rare for those engineers working in the field of telecommunication. Some of them may have realized the importance of cleanliness in data center, but they seldom take action to remove the dust and dirt. It means people simply attach less importance to keep the data center clean enough. Some contaminants can easily be seen or checked by eyes and hands, but there are still myriads of them existing inside the equipment which may lead to disastrous consequences such as overheating as well as various network failures if no proper action was taken to clean.

The Importance of Cleaning Data Center

Imagine what would happen if there is no regular cleaning in the data center? As it was mentioned above, the most direct result of contaminant is overheating. Since dust and pollutants in the data center are usually light-weight, If there is air flow, dust or dirt will move with it. The cooling system of the data center is depending largely on server fan which can bring the dust and dirt into the cooling system. The accumulation of these contaminant can cause fan failure or static discharge inside equipment. The heat dissipation will need more time and heat emission efficiency is limited. The following picture shows the contaminant at a server fan air intake that can explain this phenomenon.

the contaminant at a server fan air intake

As the cooling system is affected by the dust and dirt, the risk of the data center increases largely. Contaminants will capture every possible place in the data center where they are capable of. In addition, data center nowadays relies heavily on electronic equipment and fiber optic components like fiber optic connectors, which are very sensitive to contaminants. Problems like power failures, loss of data and short circuit might happen if the contaminants are not removed completely. What’s worse, short circuit might cause fire in the data center, which could lead to irreparable damage. The following picture shows the data center after a fire. It is really a disaster for the data center managers.

the data center after a fire

Dust and dirt can also influence the life span of data center equipment as well as their operation. The uptime of a data center may decrease if there are too many contaminants. Cleaning the data center regularly would help to reduce data center downtime and extend the life span of data center infrastructure equipment. It is proved to be cost efficient and energy saving comparing with restarting the data center or repairing the equipment.

Furthermore, data center cleanliness can offer an aesthetic appeal to a clean and dust-free environment. Although it is not the main purpose, a clean data center can present a more desirable working environment for telecom engineers, especially for those who need to install cable under a raised floor or working overhead racks and cabinet. No one would reject a cleaning data center.

Contaminants Sources of Data Center

There is no doubt that data center cleanliness is necessary. But how to keep the data center clean? Before taking action, source of contaminants in the data center should be taken into consideration. Generally, there are two main sources. One is inside the data center, and the other is from outside of the data center. The internal contaminants are usually particles from air conditioning unit fan belt wear, toner dust, packaging and construction materials, human hair and clothing as well as zinc whiskers from electroplated steel floor plates. The external sources of contamination include cars, electricity generation, sea salt, natural and artificial fibers, plant pollen and wind-blown dust.

Data Center Cleaning and Contaminants Prevention

Having known where the dust and dirt come from, here offers some suggestions and tips to reduce the contaminants.

  • Reduce the data center access. It is recommended that limited access to only necessary personnel can reduce the external contaminants.
  • Sticky mats should be used at the entrances to the raised floor, which can eliminate the contaminants from shoes largely.
  • Never unpack new equipment inside the data center, establish a staging area outside the data center for unpacking and assembling equipment.
  • No food, drink or smoking in the data center.
  • Typically all sites are required to have fresh air make-up to the data center, remember to replace on a regular basis.
  • Cleaning frequency depends on activity in the data center. Floor vacuuming should be more often as the traffic in the data center increased.
  • Inspect and clean the fiber optic components regularly, especially for fiber optic connector and interface of switches and transceivers.
  • The inside and outside of racks and cabinets should be cleaned.

Conclusion

Data center operates like an information factory nowadays as it processes countless data and information as well. Therefore, the cleanliness of the data center becomes increasingly important. If this essential “factory” is polluted by dust and dirt, it will eventually fail to provide reliable and qualified services. Not to mention that a clean data center could ensure a much more extended life span of equipment and applications thus to effectively save a great amount of money for the maintenance.

SMF or MMF, Which to Choose for Date Center Cabling?

It is critically important to choose the suitable cabling plant for data center connectivity, because the wrong decision may leave a data center incapable of supporting future grown, requiring an extremely costly cable plant upgrade to move to higher speeds. In the past, multimode fiber (MMF) has been widely deployed in data center for many years because of the high cost of single-mode fiber (SMF). However, the price difference between SMF and MMF has been largely negated as technologies have evolved. With cost no longer the dominant decision criterion, operators can make architectural decisions based on performance. So SMF or MMF, which should be chosen for data center cabling? Keep reading and you’ll find the answer.

MMF – Unable to Reach the Distance Need

Many data center operators who deployed MMF OM1/OM2 fiber a few years ago are now realizing that these MMF cannot support higher transmit rates like 40 GbE and 100 GbE. So some MMF users have been forced to add later-generation OM3 and OM4 fiber to support standards-based 40GbE and 100GbE interfaces. But the physical limitations of MMF mean that the distance between connections must decrease when data traffic grows and interconnectivity speeds increase. Deploying more fibers in parallel to support more traffic is the only alternative. So the limitations of MMF have become more serious when it has been widely deployed for generations. The operators must weigh unexpected cabling costs against a network incapable of supporting new devices.

MMF

SMF – A Viable Alternative

Due to the cost of the pluggable optics required, previously organizations were reluctant to implement SMF inside the data center, especially compared to MMF. However, newer silicon technologies and manufacturing innovations are driving down the cost of SMF pluggable optics. Fiber optic transceivers with Fabry-Perot edge emitting lasers (single-mode) are now comparable in price than power dissipation to VCSEL (multimode) transceivers. Moreover, SMF eliminates network bandwidth constraints, where MMF cable plants introduce a capacity-reach tradeoff. This allows operators to take advantage of higher-bit-rate interfaces and wave division multiplexing (WDM) technology to increase by three orders of magnitude the amount of traffic that the fiber plant can support over longer distances. All these factors make SMF a more viable option for high-speed deployment in data center.

SMF

Comparison Between SMF and MMF

With 40 GbE and 100 GbE playing roles in some high-bandwidth applications, 10 GbE has become the predominant interconnectivity interface in large data centers. Put it simply, the necessity for fiber cabling supporting higher bit rates over extended distances is here today. With that in mind, the most significant difference between SMF and MMF is that SMF provides a higher spectral efficiency than MMF. It means that SMF supports more traffic over a single fiber using more channels at higher speeds. This is in stark contrast to MMF, where cabling support for higher bit rates is limited by its large core size. As a matter of fact, in most cases, currently deployed MMF cabling is unable to support higher speeds over the same distance as lower-speed signals.

Summary

The tradeoff between capacity and reach is important as operators consider their cabling options. Network operators need to assess the extend to which they believe their data centers are going to grow. For environments where users, applications, and corresponding workload are all increasing, SMF offers the best future proofing for performance and scalability. And because of fundamental changes in how transceivers are manufactured, those benefits can be attained at prices comparable to SMF’s lower performing alternative.

Prefabricated Modular Data Center – an Extremely Agile and Cost-efficient Option

Prefabricated Modular Data CenterWhether it’s an enterprise or multi-tenant (co-location) facility, the data center is fast becoming an organization’s most valuable strategic asset. Its ability to handle immense volumes of data, provide highly reliable IT services for users and quickly adapt to the increasing demands of a dynamic environment can make or break a business. As a result, IT and facilities professionals are constantly looking to make their data centers more agile and efficient.

A typical data center is a traditional brick-and-mortar facility that can range from a few thousand to a million square feet or more. A data center of this type is often pre-designed to house all of the necessary racks, power distribution, cooling, cabling, fire suppression, and physical security systems needed to support IT services over the next 10 to 15 years. These facilities can come with a hefty price tag in the hundreds of millions of dollars and take two to three years to plan, design and build.

So, what’s the problem? As IT technologies rapidly evolve and virtualization and cloud computing complicates traditional capacity planning, a brick-and-mortar data center designed today could conceivably become obsolete before it is ever deployed. Its power, cooling and IT “white space” requirements might have been specified by the business at a certain point in time, but by the time the facility actually goes live, the needs of the business—and the data center technologies available to support the business—may have irrevocably changed. This constant demand for change results in stranded or inadequate space, power, or cooling, and leaves traditional data center owners trapped in a perpetual and expensive retrofit cycle while attempting to save their initial capital investment.

As a result, many data center owners and operators are exploring alternatives to traditional data center design-and-build.

Prefabricated Modular Data CenterWithin the last several years, the market has warmed to the concept of the prefabricated modular data center. A modular data center is a concept that uses prefabricated modules—built and tested at a factory, disassembled, shipped to a site and then reassembled to deliver data center white space, power and cooling infrastructure. A modular data center can be set up and operational within 14 to 20 weeks instead of two to three years. Also, as business capacity needs or technologies change, new modules addressing the change can be quickly and cost-efficiently added or existing solutions pre-engineered for upgrading can be seamlessly modified.

This approach enables businesses to focus on meeting their current and very near term data center capacity needs, rather than attempting to project and build for their anticipated long-term demand. It creates a purpose-built data center infrastructure that’s built to fit from the start.

The benefits of a prefabricated modular data center include:

  • Significant capital expenditure savings in design, planning, construction and infrastructure
  • Lower power, cooling, and operational expenses due to infrastructure right sizing, engineering out complexity and the usage of hyper-efficient innovative cooling designs
  • The ability to future-proof the data center by easily upgrading whenever more capacity is needed

These benefits are why the prefabricated modular data center is an extremely agile and cost-efficient option for data center owners and operators looking beyond traditional approaches to address rapid changes in business and technology needs today and tomorrow.