24-Port Gigabit Switch Selection: Which Is the Suitable Choice?

An Ethernet switch acts as a bridge to connect different parts of a network together. Although many routers also possess the network switching capabilities and multiple Ethernet ports, the Ethernet switch is not the replacement for routers. It is worth emphasizing that Ethernet switches are smarter than routers in that they operate at the data link layer (Layer 2) and the network layer (Layer 3) of the OSI Reference Model and therefore support any packet protocol. Ideally, switches will make better use of bandwidth if you prefer wired to wireless connections but have more devices than available Ethernet ports. On the other hand, an Ethernet switch is a costly way to expend the network in home or small business. So it is very important to invest an Ethernet switch with the appropriate number of ports to fit your needs. In the midst of various Gigabit Ethernet switches, a 24-port switch is considered as the most common Gigabit switch that connect devices in a local area network. Then this article will explore how to select a suitable 24-port Gigabit switch.

Popular 24-Port Gigabit Switch in the Market

FS S3800-24F4S 24-Port Gigabit Switch

FS S3800-24F4S 24-port Gigabit switch comes with 20x 100/1000BASE SFP, 4x 1GE combo and 4x 10GE SFP+ slots. The flexible port combination form provide a high bandwidth aggregation connectivity for multiple switch in network to enhance network capacity. Moreover, it is a stackable SFP managed switch, which can provide true stacking of up to 4 switches in a stack acting as a single unit with totally 106 ports (96x 1G Ports and 10x 10G ports). The switching capacity is 128Gbps. This 24-port Gigabit managed switch fits for enterprise network operators who need high performance and low power processor to provide full speed forwarding and line-dormant capacity.

FS S3800-24F4S 24-Port Gigabit Switch

Figure 1: FS S3800-24F4S 24-Port Gigabit Switch

Cisco SGE2000 24-Port Gigabit Switch

Cisco SGE2000P comes with 24 10/100/1000BASE-T RJ45 ports and 4 shared Gigabit SFP slots. This 24-port Gigabit managed switch can provide ACL (access control lists), DoS (denial-of-service), VLAN and IEEE 802.1X port authentication. And the enhanced quality of service (QoS) and traffic-management features help ensure clear and reliable voice and video communications. This Gigabit network switch enable you to take advantage of the comprehensive feature set for a better-optimized, more secure network.

Cisco SGE2000 24-Port Gigabit Switch

Figure 2: Cisco SGE2000 24-Port Gigabit Switch (Source: Cisco)

NETGEAR ProSAFE GS724T 24-Port Gigabit Switch

The Netgear ProSafe GS724T is armed with 24 copper 10/100/1000 ports and 2 SFP 100/1000 ports. Each port can transfer data at maximum throughput for a total maximum switching speed of up to 48 Gbps. This 24-port switch is intended for SMB organizations using the switch for applications like VoIP, video conferencing, and system security, etc. And it features a fanless system, allowing the switch to work silently without overheating. This is great for use on homelab, as its quiet operation won’t cause a distraction.

NETGEAR ProSAFE GS724T 24-Port Gigabit Switch

Figure 3: NETGEAR ProSAFE GS724T 24-Port Gigabit Switch (Source: NETGEAR)

TP-Link TL-SG1024 24-Port Gigabit Switch

The TP-Link TL-SG1024 features 24 Gigabit Ethernet ports and non-blocking switching, which can provide large file transferring and also be compatible with 10Mbps and 100Mbps Ethernet devices. Moreover, this network switch has 48Gbps switching capacity with 8K MAC address table, 10KB Jumbo Frame and 4MB buffer memory. This TP-Link switch is a fanless rack mount design with LED diagnostic lights, so you can easily tell which ports are in use. It can automatically adjust power consumption according to the link status to limit the carbon footprint of your network. The price is $69.99 on Amazon. So this fanless Ethernet switch is good for your wallet both because it is inexpensive to buy and because of its energy-saving technology.

TP-Link TL-SG1024 24-Port Gigabit Switch

Figure 4: TP-Link TL-SG1024 24-Port Gigabit Switch(Source: TP-Link)

Comparison of 24-Port Gigabit Switch

Gigabit Switch Mode Ethernet ports Gigabit SFP SFP+ Uplink ports Switching Capacity Forwarding Rate Power Consumption Price
FS S3800-24F4S 24 4 combo 4 128Gbps 95Mpps ≤60W(Full-loaded) $449
Cisco SGE2000 24 4 / 48Gbps 35.7Mpps 90W $390
NETGEAR ProSAFE GS724T 24 2 / 48Gbps No Information 29W $219.99
TP-Link TL-SG1024 24 / / 48Gbps 35.7Mpps 13.1W $69.99

From the chart we can see, all the Gigabit switches listed above provide 24 port Ethernet RJ45 ports, only FS S3800-24F4S 24-port Gigabit switch has 4 SFP+ uplink ports. They have some characteristics in common that make them suitable for being used in places like home or small business office. In terms of the power consumption, TP-Link TL-SG1024 and NETGEAR ProSafe GS724T are lower than others, but the huge price spread exists between these two switches because NETGEAR ProSafe GS724T has another two SFP ports for more flexible application. Among these four switches, if you have no limited cost budget, FS S3800-24F4S is a good choice. It has more flexible port combination and higher switching capacity, that is why it may cost a little more than the other three switches. If you need stronger data transferring capability, FS S3800-24F4S is a better choice considering its forwarding rate. On the contrary, TP-Link TL-SG1024 is the best budget choice. If you want a fanless switch, NETGEAR ProSafe GS724T is an inexpensive and reliable choice, but the install program only works on Windows and the secure management is very difficult to be enabled.

Conclusion

When choosing a Gigabit Ethernet switch, the first factor to consider is how many devices need to be networked together. Purchasing a network switch with too few ports and not enough capacity will prove ineffective, and one that is too large can be a waste of money. Generally, small offices with a few employees should start with a 16-port switch, but a business that is looking to expand its operations soon needs a 24-port switch. So 24-port Gigabit switch is the most future-proofing and cost-effective choice in small business network. Except the above mentioned S3800-24F4S, FS.COM also provides other three cost-effective 24-port switch for different demands.

FS.COM 24-port Gigabit Switches Mode Description
S2800-24T4F Fanless Gigabit managed switch with 24 100/1000BASE-T ports and 4 combo SFP slots
S3700-24T4S Gigabit managed switch with 24 10/100/1000BASE-T ports and 4 10GE SFP+ uplinks ports
S3800-24T4S Gigabit stackable managed switch with 24 10/100/1000BASE-T ports and 4 10GE SFP+ uplinks ports

Related Article: 48-Port 10GE Switch Selection: What Is the Right Choice?

How to Choose a Suitable Network Switch?

A network switch is a small hardware device that centralizes communications among multiple connected devices within one local area network (LAN). Network switches come in different sizes, features and functions, so choosing a switch to match a particular network sometimes constitutes a daunting task. This blog will give you a few useful things to consider when choosing the appropriate switch for a layer in a particular network.

network switch

Network Switch Technology

While switching capabilities exist for several kinds of networks, including Ethernet, Fibre Channel, RapidIO, ATM, ITU-T G.hn and 802.11, network switch can operate at one or more layers of the OSI model. Switches provide multiple advantages in network designs. All switches provide the basic traffic filtering functions, which improves network bandwidth. Besides, the internal switching circuits allow traffic flows to simultaneously occur between multiple ports. Currently, mainstream network switches support Gigabit Ethernet speeds per switch port, but high-performance switches in data centers generally support 10 Gbps per link. Different models of network switches support varying numbers of connected devices. Home network switches provide 4/8 connection for Ethernet devices, while SMB switches typically support between 32 and 128 connections.

Considerations for Choosing the Suitable Network Switch

Careful planning before purchasing a switch will save you money. At the same time, it can help you ensure the equipment has the functionality that you organization is needed, or the switches can expand their capabilities as your requirements change and grow. Here are some suggestions you can use to help guide your switch purchase.

Connection Requirements

Connection requirements are a good place to start, since they usually dictate what types of switches will be needed, and they can affect pricing dramatically. Here are something you need to consider in advance:

1. Consider the number of users that your network will have to support

2. Consider your basic network infrastructure

3. Determine the network needs of the users (Fast Ethernet or Gigabit Ethernet)

4. Choose the role of the switch (core switch, distribution switch, access switch)

5. Pick a vendor and/or company (for example: Cisco, Juniper, HP, Dell, Arista, Brocade, FS.COM)

Number of ports

The number of users and the basic network infrastructure determine the number of ports. Common numbers of ports on network switches are 5, 8, 10, 24, and 48 ports. If you only have 5 or 6 users, then a small 8 port switch will probably be enough for your needs. Number of ports is one of the biggest factors in the cost of a switch, so if you buy a switch that only supports the number of users that you will have, you will likely save a fair amount of money.

FS network switch

Port Speeds and Types

Fixed switches come in Fast Ethernet and Gigabit Ethernet. Fast Ethernet allows up to 100 Mb/s of traffic per switch port while Gigabit Ethernet allows up to 1000 Mb/s of traffic per switch port. These ports may be a combination of SFP/SFP+ slots for fiber connectivity, but more commonly they are copper ports with RJ-45 connectors on the front, allowing for distances up to 100 meters. With Fiber SFP modules, you can go distances up to 40 kilometers. Currently, Gigabit Ethernet is the most popular interface speed though Fast Ethernet is still widely used, especially in price-sensitive environments.

Link Aggregation

If you have a 24-port switch, with all its ports capable of running at gigabit speeds, you could generate up to 24 Gb/s of network traffic. If the switch is connected to the rest of the network by a single network cable, it can only forward 1 Gb/s of the data to the rest of that network. Due to the contention for bandwidth, the data would forward more slowly. That results in 1 out of 24 wire speed available to each of the 24 devices connected to the switch. Therefore, the more ports you have on a switch to support bandwidth aggregation, the more speed you have on your network traffic.

Performance

Core Layer Switches: These types of switches are routed at the core layer of a topology, which is the high-speed backbone of the network and requires switches that can handle very high forwarding rates. The switch that operates in this area also needs to support link aggregation to ensure adequate bandwidth coming into the core from the distribution layer switches. Because of the high workload carried by core layer switches, they tend to operate hotter than access or distribution layer switches. Virtually, core layer switches have the ability to swap cooling fans without having to turn the switch off.

Distribution Layer Switches: Distribution layer switches plays a very important role on the network. They collect the data from all the access layer switches and forward it to the core layer switches. Distribution layer switches provides advanced security policies that can be applied to network traffic using Access Control Lists (ACL). This type of security allows the switch to prevent certain types of traffic and permit others.

Access Layer Switches: Access layer switches facilitate the connection of end node devices to the network. For this reason, they need to support features such as port security, VLANs, Fast Ethernet/Gigabit Ethernet, Power over Internet, and link aggregation. Port security allows the switch to decide how many or what type of devices are permitted to connect to the switch.

The Three-Layered Hierarchical Model

Power requirements

At any layer, a modern switch may implement power over Ethernet (PoE), which avoids the need for attached devices, such as a VoIP phone or wireless access point, to have a separate power supply. Since switches can have redundant power circuits connected to uninterruptible power supplies, the connected device can continue operating even when regular office power fails. Another characteristic you consider when choosing a switch is PoE. This is the ability of the switch to deliver power to a device over the existing Ethernet cabling. To find the switch that is right for you, all you need to do is choose a switch according to your power needs. When connecting to desktops which do not require PoE switches, the non-PoE switches are a more cost-effective option.

Future Growth: Stackable VS. Standalone

As the network grows, you will need more switches to provide network connectivity to the growing number of devices in the network. When using standalone switches, each switch is managed, troubleshot, and configured as an individual entity. In contrast, stackable switches provide a way to simplify and increase the availability of the network. With a true stackable switch, you can connect the stack members in a ring. If a port or cable fails, the stack will automatically route around that failure, many times at microsecond speeds. You can also add or subtract stack members and have it automatically recognized and added into the stack.

Conclusion

As you can see, there is a multitude of switch options to choose from. So, have a close look at your current deployment and future needs to determine the right switch for your network. FS.COM is one of the network switch vendors, if you have any demand, welcome to visit our website.