Exploring FS 100G EDR InfiniBand Solutions: Powering HPC

In the realm of high-speed processing and complex workloads, InfiniBand is pivotal for HPC and hyperscale clouds. This article explores FS’s 100G EDR InfiniBand solution, emphasizing the deployment of QSFP28 EDR transceivers and cables to boost network performance.

What are the InfiniBand HDR 100G Cables and Transceivers

InfiniBand EDR 100G Active AOC Cables

The NVIDIA InfiniBand MFA1A00-E001, an active optical cable based on Class 1 FDA Laser, is designed for InfiniBand 100Gb/s EDR systems. With lengths ranging from 1m to 100m, these cables offer predictable latency, consuming a max of 3.5W, and enhancing airflow in high-speed HPC environments.

InfiniBand EDR 100G Passive Copper Cables

The NVIDIA InfiniBand MCP1600-E001E30 is available in lengths of 0.5m to 3m. With four high-speed copper pairs supporting up to 25Gb/s, it offers efficient short-haul connectivity. Featuring EEPROM on each QSFP28 port, it enhances host system communication, enabling higher port bandwidth, density, and configurability while reducing power demand in data centers.

InfiniBand EDR 100G Optical Modules

The 100Gb EDR optical modules, packaged in QSFP28 form factor with LC duplex or MTP/MPO-12 connectors, are suitable for both EDR InfiniBand and 100G Ethernet. They can be categorized into QSFP28 SR4, QSEP28 PSM4, QSFP28 CWDM4, and QSFP28 LR4 based on transmission distance requirements.

100Gb InfiniBand EDR System Scenario Applications

InfiniBand has gained widespread adoption in data centers and other domains, primarily employing the spine-leaf architecture. In data centers, transceivers and cables play a pivotal role in two key scenarios: Data Center to User and Data Center Interconnects.

For more on application scenarios, please read 100G InfiniBand EDR Solution.

Conclusion

Amidst the evolving landscape of 100G InfiniBand EDR, FS’s solution emerges as mature and robust. Offering high bandwidth, low latency, and reduced power consumption, it enables higher port density and configurability at a lower cost. Tailored for large-scale data centers, HPC, and future network expansion, customers can choose products based on application needs, transmission distance, and deployment. FS 100G EDR InfiniBand solution meets the escalating demands of modern computational workloads.

Navigating Optimal GPU-Module Ratios: Decoding the Future of Network Architecture

The market’s diverse methods for calculating the optical module-to-GPU ratio lead to discrepancies due to varying network structures. The precise number of optical modules required hinges on critical factors such as network card models, switch models, and the scalable unit count.

Network Card Model

The primary models are ConnectX-6 (200Gb/s, for A100) and ConnectX-7 (400Gb/s, for H100), with the upcoming ConnectX-8 800Gb/s slated for release in 2024.

Switch Model

MQM 9700 switches (64 channels of 400Gb/s) and MQM8700 switches (40 channels of 200Gb/s) are the main types, affecting optical module needs based on transmission rates.

Number of Units (Scalable Unit)

Smaller quantities use a two-tier structure, while larger quantities employ a three-tier structure, as seen in H100 and A100 SuperPODs.

  • H100 SuperPOD: Each unit consists of 32 nodes (DGX H100servers) and supports a maximum of 4 units to form a cluster, using a two-layer switching architecture.
  • A100 SuperPOD: Each unit consists of 20 nodes (DGX A100 servers) and supports a maximum of 7 units to form a cluster. If the number of units exceeds 5, a three-layer switching architecture is required.

Optical Module Demand Under Four Network Configurations

Projected shipments of H100 and A100 GPUs in 2023 and 2024 indicate substantial optical module demands, with a significant market expansion forecasted. The following are four application scenarios:

  • A100+ConnectX6+MQM8700 Three-layer Network: Ratio 1:6, all using 200G optical modules.
  • A100+ConnectX6+MQM9700 Two-layer Network: 1:0.75 of 800G optical modules + 1:1 of 200G optical modules.
  • H100+ConnectX7+MQM9700 Two-layer Network: 1:1.5 of 800G optical modules + 1:1 of 400G optical modules.
  • H100+ConnectX8 (yet to be released)+MQM9700 Three-layer Network: Ratio 1:6, all using 800G optical modules.

For detailed calculations regarding each scenario, you can click on this article to learn more.

Conclusion

As technology progresses, the networking industry anticipates the rise of high-speed solutions like 400G multimode optical modules. FS offers optical modules from 1G to 800G, catering to evolving network demands.

Register for an FS account, select products that suit your needs, and FS will tailor an exclusive solution for you to achieve network upgrades.

Revolutionizing Data Center Networking: From Traditional to Advanced Architectures

As businesses upgrade their data centers, they’re transitioning from traditional 2-layer network architectures to more advanced 3-layer routing frameworks. Protocols like OSPF and BGP are increasingly used to manage connectivity and maintain network reliability. However, certain applications, especially those related to virtualization, HPC, and storage, still rely on 2-layer network connectivity due to their specific requirements.

VXLAN Overlay Network Virtualization

In today’s fast-paced digital environment, applications are evolving to transcend physical hardware and networking constraints. An ideal networking solution offers scalability, seamless migration, and robust reliability within a 2-layer framework. VXLAN tunneling technology has emerged as a key enabler, constructing a virtual 2-layer network on top of the existing 3-layer infrastructure. Control plane protocols like EVPN synchronize network states and tables, fulfilling contemporary business networking requirements.

Network virtualization divides a single physical network into distinct virtual networks, optimizing resource use across data center infrastructure. VXLAN, utilizing standard overlay tunneling encapsulation, extends the control plane using the BGP protocol for better compatibility and flexibility. VXLAN provides a larger namespace for network isolation across the 3-layer network, supporting up to 16 million networks. EVPN disseminates layer 2 MAC and layer 3 IP information, enabling communication between VNIs and supporting both centralized and distributed deployment models.

For enhanced flexibility, this project utilizes a distributed gateway setup, supporting agile execution and deployment processes. Equal-Cost Multipath (ECMP) routing and other methodologies optimize resource utilization and offer protection from single node failures.

RoCE over EVPN-VXLAN

RoCE technology facilitates efficient data transfer between servers, reducing CPU overhead and network latency. Integrating RoCE with EVPN-VXLAN enables high-throughput, low-latency network transmission in high-performance data center environments, enhancing scalability. Network virtualization divides physical resources into virtual networks tailored to distinct business needs, allowing for agile resource management and rapid service deployment.

Simplified network planning, deployment, and operations are essential for managing large-scale networks efficiently. Unnumbered BGP eliminates the need for complex IP address schemes, improving efficiency and reducing operational risks. Real-time fault detection tools like WJH provide deep network insights, enabling quick resolution of network challenges.

Conclusion

Essentially, recent advancements in data center networking focus on simplifying network design, deployment, and management. Deploying technological solutions such as Unnumbered BGP eliminates the need for complex IP address schemes, reducing setup errors and boosting productivity. Tools like WJH enable immediate fault detection, providing valuable network insights and enabling quick resolution of network issues. The evolution of data center infrastructures is moving towards distributed and interconnected multi-data center configurations, requiring faster network connections and improving overall service quality for users.

For detailed information on EVPN-VXLAN and RoCE, you can read: Optimizing Data Center Networks: Harnessing the Power of EVPN-VXLAN, RoCE, and Advanced Routing Strategies.

Tips to Simplify Your Data Center Management

Data center houses a network’s most critical systems and is vital to the continuity of daily operations. Many of us have seen what it looks like. As we all know, the more complex a data center is, the more difficult it can be to ensure efficiency and orderly management—not only of the systems and equipment but of the working staff as well. How to simplify data center management? This post may give you the answer.

data center management

When several different types of product, tools, and resources are used to support a network, complication cannot be avoided. With the rapid development of society, many business demands require the data center to operate quickly and effectively. In order to achieve this goal, various mix-and-match occur, which lead to a complicated data center. Here are several tips to simplify data center management and make it work efficiently.

Emphasize Standardization

With the fast advancement of communications, equipment used in data centers is replaced frequently. Therefore, product standardization is something to keep in mind when upgrading and replacing the equipment, as well as the infrastructure that supports it. By utilizing standardized data center hardware, maintenance can be finished smoother and faster with common approaches, which save time, resources and money.

Choosing Easy Installation and Space-saving Components

A complicated data center environment makes it difficult to identify the root cause of errors or misconfigurations. So selecting some easy installation and space-saving products mean shorter installation times, less training time for staff and lower maintenance costs. There are many examples of products that make installation and maintenance simpler for data centers. Here are some examples.

LC Uniboot Patch Cable

Designed to deliver maximum connectivity performance in a minimal footprint according to standards, LC uniboot patch cable uses a single, unified jacket for both fibers. With this unique structure, it allows up to 68% space-saving in cabling volume, offering easier maintenance and operability. Besides, LC fiber optic connectors can offer higher density and performance in most environments, which makes it popular in many applications.

push-pull-tab patch cable

High-Density Push-pull Tab Fiber Optic Patch Cable

Push-pull tab patch cable has a special “pull” tab design that enables the connector to be disengaged easily from densely loaded panels without the need for special tools, allowing users easy accessibility in tight areas when deploying in data center applications. With this unique design, high-density optical cable, such as MTP/MPO fiber cable, offers high-density connections between network equipment in telecommunication rooms and data centers. They can be easily installed or removed with one hand, which improve efficiency greatly.

High-Density Fiber Enclosure

Fiber optic enclosures are designed to house, organize and manage fiber connections, terminations, and patching in all applications, providing the highest fiber densities and port counts in the industry contributing to better rack space utilization and minimizing floor space. Loaded with different numbers of FAPs, FHD fiber enclosures offer a high-density flexibility for cabling installations of data centers to maximize rack space utilization and minimize floor space.

4u fiber enclosure

Of course, except for the cables and enclosures mentioned above, other small components in data centers also cannot be ignored. For instance, cable ties and labels also play a critical role in cabling installations of data centers. In a word, every detail should be taken into consideration when managing a data center.

Preparing for Future-proof Cabling

As we have mentioned above, under this rapid development environment, data center management should be equipped to handle current needs while offering a clear path for future technology requirements. Complex data centers can be simplified when components are deployed that allow you to grow and migrate to new systems in the future without compromising performance or reliability. For example, solutions that offer support for both traditional ST and SC and modern LC and MPO applications support cost-effective, simpler migration to 40G and 100G applications with only a simple cassette or adapter frame change.

Summary

When data center processes and components are simplified, installation and maintenance for data center management become easier and less costly, staff resources are freed up for more strategic tasks, troubleshooting becomes less cumbersome and migration is also more easily achieved. All components mentioned above are available in FS.com. Welcome to visit our website for more detailed information.

How to Build Your Data Center?

Today’s data centers are complex. It houses dozens of diverse bandwidth-intensive devices tightly such as servers, clustered storage systems and backup devices, all of which are interconnected by cables. Therefore, the importance of a reliable, scalable and manageable cabling infrastructure is self-evident. Then how to build a data center which can meet today and future growth? This article may give you some advice about it.

5

How to Plan?

As data center houses a number of servers which are connected by numerous cables, it’s important to make it organized. If not, the last thing you will encounter is a tangled mass of cables that make it impossible to determine how severs are connected. Let alone to build a high-efficiency data center. Here are some tips on how to start your data center.

Using a Structured Approach

Using a structured approach to make data center cabling means designing cable runs and connections to facilitate identifying cables, troubleshooting and planning for future changes. In contrast, spontaneous or reactive deployment of cables that only suits immediate needs often makes it difficult to diagnose problems and to verify proper connectivity.

Using Color to Identify Cables

Colors can provide quick visual identification, which simplify management and can save your time when you need to trace cables. Color coding can be used ports on patch panels, color sleeves, connectors and fiber cables.

Establishing a Naming Scheme

Once the physical layouts of a data center are defined, applying logical naming will make it easy to identify each cabling component. Effective labeling brings better communications and can reduce unnecessary problems when locating a component. The suggested naming scheme often includes Building, Room, Grid Cell, Workstation, etc.

How to Select the Necessary Cabling Components?

After knowing how to construct the backbone network of a data center, selecting a right and suitable cabling components can quickly become overwhelming. Each cabling component has its own advantages and disadvantages. So it’s important to get the right equipment purchased and deployed to avoid future cabling problems. Below are some tips on how to choose corresponding cabling components.

Patch Panel

Patch panels enable easy management of patch cables and link the cabling distribution areas. How to choose a suitable one? First, the patch panels which allow different cable connectors to be used in the same patch panel are a good choice. Second, when choosing a patch panel, the main types of connectors within one panels are LC for fiber and RJ45 for copper. Finally, patch panels with colored jacks or bezels allow easy identification of the ports also can be taken into consideration.

angledpatchpanels

Cable Manager

Cable managers offer a neat and proper routing of the patch cables from equipment in racks and protect cables from damage. Generally, there are horizontal and vertical cable managers. And there are different requirements of these cable managers. When choosing horizontal cable managers, it’s essential to make sure that certain parts of the horizontal cable manager are not obstructing equipment in the racks and that those individual cables are easy to be added or removed. While choosing vertical cable managers, additional space used to manage the slack from patch cords is needed.

cable-management-panel

Cable Ties

Cable ties are used to hold a group of cables together or fasten cables to other components. Using cables ties can avoid crushing the cables and impacting cable performance. Velcro cable ties provided by Fiberstore are perfect for controlling and organizing wires, cords, and cables. Besides, using ties will help you identify cables later and facilitate better overall cable management.

cable-ties

Of course, except for what have been mentioned above, there are other cabling components which need to be selected carefully such as cable labels, backbone cables and so on.

What Should Be Paid Attention to When Installation?
  • Cabling installations and components should be compliant with industry stands.
  • Use thin and high-density cables wherever possible, allowing more cable runs in tight spaces.
  • Remove abandoned cables which can restrict air flow and may fuel a fire.
  • Keep some spare patch cables. The types and quantity can be determined from the installation and projected growth. Try to keep all unused cables bagged and capped when not in use.
  • Avoid routing cables through pipes and holes, which may limit additional future cable runs.
Summary

Building a data center is not an easy task. Each step and component selecting during installations need carefulness and patience. FS.COM provides all cable products including structured cables, patch panels, cable ties, labels and other tools needed in data center installation. All of them will maximize the efficiency and reliability of the data center installation.

Sample Data Installations

As long as you follow the ANSI/TIA/EIA-568-B Standard, most of your communications infra-structure will be pretty similar and will not vary based on whether it is supporting voice or a specific data application. The horizontal cables will all follow the same structure and rules. However, when you start using the cabling for data applications, you’ll notice some differences. We will now take a look at a couple of possible scenarios for the usage of a structured cabling system.

The first scenario, shown in Figure 7.14, shows the typical horizontal cabling terminated to a patch panel. The horizontal cable terminates to the 110-block on the back of the patch panel. When a workstation is connected to the network, it is connected to the network hub by means of a RJ-45 patch cable that connects the appropriate port on the patch panel to a port on the hub.

The use of a generic patch panel in Figure 7.14 allows this cabling system to be the most versatile and expandable. Further, the system can also be used for voice applications if the voice system is also terminated to patch panels.

cabling system

Another scenario involves the use of 110-blocks with 50-pin Telco connectors. These 50-pin Telco connectors are used to connect to phone systems or to hubs that are equipped with the appropriate 50-pin Telco interface. These are less versatile than patch panels because each connection must be termiated directly to a connection that connects to a hub.

In past years, we have worked with these types of connections, and network administrators have reported to us that these are more difficult to work with. Further, these 50-pin Telco conectors may not be interchangeable with equimpent you purchase in the further. Figure 7.5 shows the use of a 110-block connecting to network equipment using a 50-pin Telco connector.

A final scenario that is a combination of the patch-panel approach and the 110-block approach is the use of a 100-block patch cables (such as the one shown previously in Figure 7.9). This is almost identical to the patch-panel approach, except that the patch cables used in the telecommunications closet have a 110-block connector on one side and an RJ-45 on the other. This configuration is shown in Figure 7.16

17

The previous examples are fairly simple and involve only one wiring closet. Any installation that requires more than one telecommunications closet and also one equipment room will require the service of a data backboane. Figure 7.17 shows an example where data backbone cabling is required. Due to distance limitations on horizontal cable when it is handling data applications, all horizonatal cable is terminated to network equimpment (hubs) in the telecommunications closet. The hub is then linked to other hubs via the data backbone cable. Now recommend you two fiber optic patch panels, following picture shows the details.

12 Port Fiber Patch Panel Preloaded with Simplex Multimode SC Connectors

12 Port SC Duplex

This 12 port fiber patch panel is designed to fit on a standard 19″ rack and provide optimal protection for your fiber optic applications. There are two cable entry points on the back of the fiber housing fitted with rubber grommets to protect the fiber optic cable from damage. Along with being loaded with 12 SC connections, each fiber enclosure includes one cable routing spool and one 12 fiber splice tray. Also included are zip ties, cable routing clamps, mounting screws, fiber splice sleeves and installation instructions.

24 Port Fiber Patch Panel With Multimode Duplex SC Connectors

24 port

The 24 Port Fiber Patch Panel is fundamental to network system operations; whether it be testing, organization, or maintenance, we as users rely on accessible and dependable panels. Let us help you maintain your network with our Fiber Optic Patch Panels. These sliding rack mount panels feature 24 ports and come pre-loaded with 24 SC Duplex multimode adapters. If you have a few patches to make right away, make use of the included fiber management kit, which has some essential goods such as a PG 13.5 cable gland, 1 splice bridge, 8 bunny clips, 24 fiber strands, and 1 warning label for good measure. These rugged steel panels are finished with black powder coating for a clean finish, are 1U (1.75 in.) height for easy installation and access, and come with labels for easy identification during use.

Our fiber optic patch panels feature anywhere from 6 to 576 ports for the ultimate in flexibility and convenience. Plus, they’re available with LC, SC or ST connections – you’ll be able to integrate any component or piece of equipment, old and new. For modular and cabinet applications, Fiberstore carries rack mounted units that easily install in standard 19″ racks, as well as fiber patch panel wall mount units that feature built-in cable management.