10G DWDM Tunable XFP – Up to 80 km Reach

With the spread of cloud computing and mobile broadband service, the volume of communications traffic has rapidly increased. In order to enable high-capacity optical networks, using a single optical fiber for optical signals of several different wavelengths in DWDM system is widely used. For this reason, tunable transceiver that enables ROADM functionality in next-generation networks is becoming more and more popular. In today’s market, there are mainly two kinds of tunable DWDM transceivers: tunable XFP and tunable SFP+. This article will take you to explore the DWDM C-band tunable XFP transceiver with 40 / 80 km transmission distance options.

10g-dwdm-tunable-xfp-transceiver

Tunable XFP Transceiver

Tunable XFP transceiver is an integrated fiber optic transceiver that provides a high-speed serial link at signaling rates from 9.95 Gbps to 11.35 Gbps. It complies with the ITU-T G.698.1 S-D100S1-2D standard with 50GHz channel spacing for SONET/SDH, IEEE DWDM 10GBASE-ZR for 40 or 80 km reach (Ethernet), and DWDM 10G FC (Fibre Channel) for 40 or 80 km reach applications. Tunable XFP can be tuned from channel C17 (1563.86nm) to C61 (1528.38nm). The maximum distance of this transceiver on a single mode fiber is up to 80 km. As mentioned above, tunable XFP optical transceiver is a full-duplex serial electric, serial optical device with both transmit and receive functions contained in a single module. On the transmit side, the 10 Gbps serial data stream is recovered, retimed, and passed to a modulator driver. The modulator driver biases and modulates a C-band-tunable integrated laser Mach-Zehnder (ILMZ), enabling data transmission over singlemode fiber through an industry-standard LC connector. On the receive side, the 10 Gbps optical data stream is recovered from an APD/transimpedance amplifier, retimed, and passed to an output driver. This module features a hot-pluggable XFI-compliant electrical interface. Here is a simple picture showing its working process.

function diagram of tunable xfp

Tunable XFP Optics Specifications:

  • 50 GHz ITU channel spacing with intergrated wavelength locker
  • Available in all C-Band Wavelengths on the DWDM ITU grid
  • Available distances 40 or 80 km
  • Supports 9.95Gb/s to 11.35Gb/s
  • Built-in Digital Diagnostic Functions
  • Tempereature Range: -5°C to 70°C

Two Transmission Distance Options: 40 km or 80 km

There are two transmission distance options for tunable XFP transceiver: 40 km or 80 km. Tunable XFP DWDM 80 km transceiver is designed for long distance optical communications up to 80 km with signaling rates up to 10Gbps. Obviously, the main difference is transmission distance. On account that 10G tunable DWDM XFP optical transceiver provides digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters: transmitted optical power, received optical power, transceiver temperature, laser bias current and transceiver supply voltage. Therefore, the differences between 40 km tunable XFP and 80 km tunable XFP mainly lie on theses parameters. One thing to note is that 40 km tunable XFP optics is designed with high performance PIN receiver, while the 80 km tunable XFP transceiver is APD receiver. The APD (avalanche photodiode) receiver employed in these extended-reach optical transceivers has an enhanced sensitivity to allow for these extended distance fiber runs. However, it is to be noted that the input power is typically between -7 and -24 dBm. Therefore, the receiver sensitivity between these two distance has a big difference. Generally, the max receive dBm of 40 km tunable XFP transceiver is -15, while the 80 km tunable XFP transceiver is -24. And for power budget, 40 km tunable XFP is 14dB while a distance up to 80 km is up to 22dB power budget. The following table lists the main differences.

40km 80km tunable xfp

Conclusion

In general, the channel switching of tunable switches can enable the service operators to turn up circuits faster and reduce their sparing costs dramatically in today’s DWDM systems. On the other hand, tunable transceiver is usually two or four times more expensive than the regular static DWDM optical module, because a special tunable laser is applied in it. Tunable XFP transceiver provides a full C-band window covering 1528nm to 1566nm for DWDM optical networks, which meets the need of rapid increase in the volume of communications traffic from telecom carrier and operator. The tunable DWDM XFP module can replace the fixed DWDM channel XFP transceivers that are currently used, while reduce the large stock since all wavelengths can now be covered with one transceiver module.

Model Frequency Wavelength Fiber Type Connector Price on FS.COM
ONS-XC-10G-C 50 GHz 1563.86~1528.3 SMF LC $1,400
XFP-10G-CBAND-T50-ZR 50 GHz 1563.86~1528.3 SMF LC $1,400
NTK583AAE6 50 GHz 1563.86~1528.3 SMF LC $1,400
TDXFP-10GHXXX-80 50 GHz 1563.86~1528.3 SMF LC $1,400
TDXFP-10GHXXX-40 50 GHz 1563.86~1528.3 SMF LC $1,400

Unveil 10G DWDM Tunable SFP+

Optical transceivers play a key role in handling all storage, data, voice and video traffic whether linking rack to rack, bottom to top of rack, data center to data center or enterprise networks to network. A range of flexible fiber optic transceiver modules cover all of network needs, such as SFP, SFP+, QSFP, QSFP28, CFP, etc. But for 10G DWDM tunable SFP+, many people might find themselves in the mire. When I first heard about this tunable transceiver, I thought that it would definitely bring revolutionary change to future metro Ethernet and optical transport networks with its important practical value for flexibly selecting working wavelength. So this article will unveil all of the things about tunable SFP+ optical transceiver.

FS DWDM Tunable SFP+

About 10G DWDM Tunable SFP+

As the demand for great traffic capacity keeps growing, more optical transceivers of different wavelengths are needed. So tunable transceivers are recent innovations in DWDM transport systems. DWDM tunable transceivers are within the scope of DWDM transceivers, through which different DWDM wavelengths can be configured and output in the same optical module. But compare with conventional fixed-wavelength DWDM SFP+, the tunable SFP+ uses tunable laser as light sources in DWDM systems, which is tunable across the entire C-band with 96 channels on the ITU-T 50-GHz grid.

Cisco-tunable-SFP+

The tunable laser technology is firstly introduced by Oclaro, a leading supplier and and innovator of tunable laser and transceiver solutions. In 2013, it announced a standards-compliant, multi-rate tunable SFP+, which supports rates between 9.95 and 11.3 Gbps. But the first-generation tunable SFP+ optical transceivers were not widely adopted, because they did not meet the critical requirement of less than 1.5 W of power consumption at high operating temperatures. So in 2014, Oclaro demonstrated a new tunable SFP+ module based on a new Oclaro InP tunable laser platform. With the innovative new chip design and the use of next generation materials, the new module is fully compliant to the SFP MSA form factor and can operate at 1.5W at 70 degrees C with excellent OSNR tolerance. With the breakthrough of technology, the 10G tunable SFP+ transceivers become an important component for next generation data center, metro and regional optical network equipment. They meet the world’s growing bandwidth demands while reducing the size and power consumption for 10G connections.

Key Highlights of Tunable SFP+ Module:

(1) Fully compliant with MSA standard size based on SFF-8432 specification for Improved Pluggable Form Factor, rev. 5.1

(2) Tunable across the full C-band with 96 channels on the ITU-T 50GHz grid

(3) Multi-rate operation: 9.95 Gbit/s to 11.3 Gbit/s

(4) Operates at 1.5W at 70 degrees C with excellent OSNR tolerance

Advantages of Tunable SFP+

The tunable SFP+ transceivers are high-performance optics which can be tuned to the appropriate wavelength. The ability to operate on various wavelengths has set these optics apart from fixed-wavelength DWDM SFP+. Besides, These tunable optics will become popular among DWDM systems due to the several advantages.

  • Flexible network management

A tunable SFP+ transceiver will be remotely configured for a specific wavelength to support bandwidth changes as needed in Enterprise or Metro networks.

  • Reduced network inventory

One tunable SFP+ transceiver will support more than 80 different wavelengths. It will allow network operators to hold one tunable device code as opposed to 80+ fixed wavelength transceivers.

  • Reduced power consumption

It will provide a significant reduction in electrical power dissipation compared to other tunable solutions.

  • Compact and high-density form factor

The new tunable SFP+ transceiver will be about the size of a pack of gum, saving valuable real estate in data centers.

  • Increased network capacity

The tunable SFP+ will double the number of channels supported in this compact transceiver form factor. Upgrading to 50GHz channel spacing doubles the capacity potential in Enterprise and Metro networks.

Conclusion

The advent of 10G DWDM tunable SFP+ transceivers in the market will accelerate the trend for pace-, power-, and cost-efficient network solutions. Because tunability is critical for minimizing inventory and enabling flexible rapid service provisioning. Although now the market share for DWDM tunable SFP+ transceiver is not big enough, the huge potential will be demonstrated in the near future.

Optics Solutions for Netgear ProSAFE XS712T (XS712T-100NES)

With the growth of virtualization, cloud-based services and applications like VoIP, video streaming and IP surveillance, SMB networks need to extend beyond simple reliability to higher speed and performance. As a leading provider of networking equipment for SMBs, Netgear had launched a variety of cost-effective 10GBASE-T switches including Netgear ProSAFE XS708Ev2, XS716E, XS708T, XS712T, XS716T, XS728T, XS748T and XSM7224. When looking for a lower cost and high capacity 10GBASE-T switch in SMB home/office lab environments, the Netgear ProSAFE XS712T is one of the best options. It comes in at around $1,100 at Amazon which is more budget friendly than the larger data center switches. This article will review the Netgear ProSAFE XS712T (XS712T-100NES) 10GBASE-T switch.

Netgear ProSAFE XS712T (XS712T-100NES): 12-Port 10GBASE-T Switch

Netgear ProSAFE XS712T is a powerful smart managed switch that comes with 10 dedicated 10GBASE-T RJ-45 copper ports supporting 100M/1G/10G speeds and 2 combo copper/SFP+ fiber 10G ports. The 2 combo SFP+ ports can be used as 10GASE-T ports or as SFP+ 10Gb Ethernet ports. This is an awesome feature as it allows an inexpensive SPF+ link via DAC to a 24 or 48 port 1Gb Ethernet switch for non-10Gb networking needs. All ports can automatically negotiate to the highest speed, which makes the switch ideal for environments that have a mix of Ethernet, Fast Ethernet, Gigabit Ethernet, or 10-Gigabit Ethernet devices. Cat 5e/Cat 6/Cat 6a/Cat 7 can be used to make 10G connections. Cat 6a/Cat 7 cables are recommended if the cable distance is greater than 45 meters. Besides, the smart switch can be freestanding or rack mounted in a wiring closet or equipment room. This 10G smart managed switch is purposely designed as a cost-effective way to provide 10G connections to 10G-capable servers and NAS (Network Attached Storage) systems. It also can be used at the center of a small business network or as an aggregation/access switch in a larger organization.

Netgear ProSAFE XS712T

Figure 1:  Netgear ProSAFE XS712T (Source: www.netgear.com )

Highlights of Netgear ProSAFE XS712T

In order to meet the current and future needs on virtualization, converged network and mobility, the XS712T provides comprehensive L2+/Layer 3 Lite features, such as VLAN, QoS, IGMP and MLD snooping, Static Routing, Link Aggregation, ACL binding. Besides, it has an easy-to-use Web-based management GUI which makes setup and management simple. Some of main features include:

10GBASE-T Connection

The RJ-45 copper ports of XS712T comply with IEEE 10GBASE-T standards. They support low-latency, line-rate 10G copper “Base-T” technology with backward compatibility to Fast Ethernet and Gigabit Ethernet. So it allows for a cost effective and simpler upgrade path to 10-Gigabit Ethernet. The existing Cat5/Cat5e is supported for Gigabit speeds up to 100 meters, Cat6 for 10-Gigabit speeds up to 45 meters and Cat6a/Cat7 for 10GBASE-T connection up to 100 meter.

Designed as Core Switch for SMB Network

The powerful L2+/Layer 3 Lite features make XS712T the most cost-effective core switches for SMB and virtualization environment. This switch is also a future-proofing choice with 10G bandwidth, advanced traffic management and comprehensive IPv6 support.

netgear_prosafe_xs712t_l2_10gbe_switch in SMB network

Figure 2: Netgear ProSAFE XS712T in SMB Network (Source: www.netgear.com )

Act as Aggregation Switch for Medium Sized Networks

The XS712T used as a aggregation switch has many useful purposes. It can help to resolve the congestion issue between network edge and core, which is caused by the broader adoption of Gigabit-to-the-desktop. Unlike multiple Gigabit Ethernet links, it provides greater scalability resulting in a simplified and highly efficient network infrastructure. What’s more, it can reduce cabling complexity because it can use existing cabling efficiently.

Optics Solutions for Netgear ProSAFE XS712T (XS712T-100NES)

As mentioned above, The Netgear ProSAFE XS712T smart switch provides 12 twisted-pair ports that support nonstop 100M/1000M/10G networks. The switch also has two built-in SFP+ GBIC combo slots that support 1000M and 10G optical modules. Using these Gigabit slots, 100M/1000M/10G copper and 1000M/10G fiber connectivity can create high-speed connections to a server or network backbone. So 1000BASE-T SFP copper transceiver, 1000BASE SFP and 10G SFP+ transceivers are suitable for this switch. The following table lists the compatible transceivers and optic cables from FS.COM.

MFG PART# Description
AGM734 NETGEAR AGM734 Compatible 1000BASE-T SFP Copper 100m Transceiver, RJ-45 Interface
AGM731F NETGEAR Compatible 1000BASE-SX SFP 850nm 550m DOM Transceiver, LC Interface
AGM732F NETGEAR Compatible 1000BASE-LX SFP 1310nm 10km DOM Transceiver, LC Interface
AXM761 NETGEAR Compatible 10GBASE-SR SFP+ 850nm 300m DOM Transceiver, LC Interface
AXM762 NETGEAR Compatible 10GBASE-LR SFP+ 1310nm 10km DOM Transceiver, LC Interface
AXM763 NETGEAR Compatible 10GBASE-LRM SFP+ 1310nm 220m DOM Transceiver, LC Interface
AXM764 NETGEAR Compatible 10GBASE-LR Lite SFP+ 1310nm 2km DOM Transceiver, LC Interface
AXC761 1m NETGEAR Compatible 10G SFP+ Passive DAC
AXC763 3m NETGEAR Compatible 10G SFP+ Passive DAC
Conclusion

The Netgear XS712T (XS712T-100NES) provides a solid cost-effective solution especially for those with SMB home/ office lab environments. If you are seeking for afforable 10GBASE-T switch for your home lab, the XS712T can be taken into consideration. What’s more, the compatible fiber transceivers and cables can be found in many third party vendors with reasonable prices, such as cablestogo, fluxlight, smartoptics, FS.COM, and etc. You have a lot of choices to save money.

Understanding Link Aggregation and LACP

Link aggregation, as its name indicates, is the approach to combine multiple parallel physical network links into a single logical link to increase bandwidth and create resilient and redundant links. It enables us to enhance the capacity and availability of the connections between devices using Fast Ethernet and Gigabit Ethernet technology. LACP, known as link aggregation control protocol, is the standard protocol supported by IEEE 802.3ad to configure link aggregation. This article will shed some lights on link aggregation and LACP technology.

link aggregation

What Is Link Aggregation and LACP, Why Use them?

Link aggregation allows one to combine multiple network connections (same data rate, duplex capability, etc) in parallel to increase throughput beyond what a single connection could sustain, and to provide redundancy in case one link goes down. Besides, link aggregation load balance enables the processing and communications activity to be distributed across several links in a trunk, thus not overwhelming a single link. Moreover, improvements within the link are obtained using existing hardware, so you don’t have to upgrade to higher-capacity link technology. This technology is not just for core switching equipment such as link aggregation switch. Network interface cards (NICs) can also sometimes be trunked together to form network links beyond the speed of any one single NIC.

link aggregation control protocol

LACP is a vendor independent standard protocol for link aggregation. LACP links need to be manually configured on the physical network switch, to allow both links to appear as one logical aggregated link. LACP provides automatic determination, configuration, and monitoring member links. When LACP is enabled, a local LAG (link aggregation group) cannot transmit packets unless a LAG with LACP is also configured on the remote end of the link. A typical LAG deployment includes aggregate trunk links between an access switch and a distribution switch or customer edge (CE) device.

How Does LACP Work?

In a LACP enabled link, the firewall is capable of using LACP to detect the physical interfaces between itself and a connected device and manage those interfaces as a single virtual interface (aggregate group) – which increases the bandwidth between devices. Enabling LACP provides redundancy within the group: the protocol can detect interface failures automatically and performs failover to standby interfaces. Without LACP, you must spend more time manually identify interface failures occurring within the channel.

LACP protocol benefit

LACP for Gigabit Interface Configuration

By transmitting LACP packets between ports, LACP supports the automatic creation of Gigabit Ethernet port channel. It is capable of dynamically grouping port and informing the other ports. As LACP successfully identifies matched Ethernet links, it facilitates grouping the links into a Gigabit Ethernet port channel. Then it begins to change LACP packers between ports in either the two modes:

  • Active—Places a port into an active negotiating state, in which the port initiates negotiations with remote ports by sending LACP packets.
  • Passive—Places a port into a passive negotiating state, in which the port responds to LACP packets it receives but does not initiate LACP negotiation. In this mode, the port channel group attaches the interface to the bundle.

Both modes allow LACP to negotiate between ports to determine if they can form a port channel based on criteria such as port speed and trunking state. Here are some important parameters to use during configuration of the link aggregation.

LACP System Priority: This is configured per router. It is used with MAC address to create LACP System ID.

LACP System ID = LACP System Priority + MAC Address

LACP Port Priority: It is configured per port. It is used to form Port Identifier with Port Number.

LACP Port Identifier = LACP Port Priority + Port Number

It is also used to determine which port should be in standby mode during an hardware limitation.

LACP Administrative Key: It is automatically calculated equal to the channel group identification number on each LACP configured port. It defines the ability of a port to aggregate with other ports, the aggregation ability is determined by, port characteristics and configuration restrictions.

LACP Max-bundle: It is the number of bundled ports in a bundle. As I mentioned below it is maximum 8. But in some platforms it can be 4.

If all the compatible ports cannot be aggregated by LACP, then the remaining ones can act as standby ports. When there is a failure occurs in one of the bundled ports, the standby ports become active one by one.

Conclusion

Link aggregation is the efforts made to set up parallel network structures to provide redundancy, or to improve performance, which increases bandwidth, provides graceful degradation as failure occurs, and enhances availability. LACP facilitate the configuration of link aggregation with automatic determination, configuration, and monitoring. Hope this article could help understanding link aggregation and LACP.

Layer 3 Switch VS. Router

In the OSI model, we know that traditional network switches operate at Layer 2 while network routers operate at Layer 3. Besides, switches are understood to be forward traffic based on MAC address, while routers perform the forwarding based on IP address. Layer 3 switches have a lot in common with traditional routers: they can also support the same routing protocols, inspect incoming packets and make dynamic routing decisions based on the source and destination addresses inside. For this reason, many networking beginners are puzzled over the definition and purpose of a Layer 3 switch. So what is on earth Layer 3 switch and how is it different from router?

Layer 3 Switch

Layer 3 switch is also called multilayer switch. It is a specialized hardware device used in network routing, which is conceived as a technology to improve network routing performance on large local area networks (LANs) like corporate intranets. A Layer 3 switch is both a switch and a router. So Layer 3 switch is a switch that can route traffic, and a router with multiple Ethernet ports has a switching functionality. It can switch packets by checking both IP addresses and MAC addresses. On this account, Layer 3 switches separates ports into VLANs and perform the routing between them, in addition to supporting routing protocols such as RIP, OSPF and EIGRP.

Layer 3 switch

Layer 3 Switch VS. Router

From the basics of Layer 3 switch, it may seem to perform the same functionality with the router. In fact, they have some key distinction facts. The key differences between Layer 3 switches and routers lay in the hardware technology used to build the unit. The hardware inside a Layer 3 switch merges that of traditional switches and routers, replacing some of a router’s software logic with hardware to offer better performance in some situations. The table below illustrates the differences between Layer 3 switch and router.

Layer 3 Switch VS. Router

Main Differences:
  • Cost – Layer 3 switch is much more cost effective than router for delivering high-speed inter-VLAN routing. High performance router is typically much more expensive than Layer 3 switch.
  • Port density – Layer 3 switch has much higher port count while router has a lower port density than Layer 3 switch.
  • Flexibility – Layer 3 switch allows you to mix and match Layer 2 and Layer 3 switching. It means that you can configure a Layer 3 switch to operate as a normal Layer 2 switch.
  • WAN technologies support – Layer 3 switch is limited to usage over LAN environment where Inter VLAN routing can be performed. However, when it comes to working on WAN and edge technologies, Layer 3 switch lags behind. Router is the front runner in such scenario where WAN technologies such as Frame Relay or ATM need to be fostered.
  • Hardware/Software decision making – The key difference between Layer 3 switch and router lies in the hardware technology used to making forwarding decision. Layer 3 switch uses ASICs for forwarding decisions. Conversely, the router makes forwarding decisions based on hierarchical Layer-3 addresses.
Layer 3 Switch with VLANs

As here is mentioned the VLAN, so let’s talk about it firstly. A VLAN (virtual LAN) is a logical subnetwork that can group together a collection of devices from different physical LANs. VLANs can improve the overall performance of busy networks. So they are often set up for improved traffic management by larger business computer networks. With a VLAN, traffic can be handled more efficiently by network switches.

Each virtual LAN must be entered and port-mapped on the switch. Routing parameters for each VLAN interface must also be specified. Some Layer 3 switches implement DHCP support that can be used to automatically assign IP addresses to devices within a VLAN. Alternatively, an outside DHCP server can be used, or static IP addresses configured separately. The diagram below shows an example of a layer 3 switching routing between VLANs through its two VLAN interfaces.

Layer 3 Switch with VLAN

These switches are most commonly used to support routing between virtual LANs (VLANs). Benefits of Layer 3 switches for VLANs include:

  • Reduction in the amount of broadcast traffic
  • Simplified security management
  • Improved fault isolation
Conclusion

From what we have discusses, Layer 3 switch may be more preferable in result of its capability of routing and switching. Besides, it can perform as a top of rack device and a distributed core switching layer at the same time. This reduces the L2 complexity of the client access layer, which makes the network more reliable and easier to manage. FS.COM can provide a comprehensive, scalable and secure portfolio of switches for enterprise and service provider networks. There are also a huge stock of compatible fiber optic transceivers and cables. For more details, please visit www.fs.com.

FS S2800-24T4F Fanless Switch – Energy-saving Ethernet Access Switch

As we all know, network switches are always a little bit noisy. Many people are bewildered by this problem. In fact, the noise mainly comes from the multiple fans that operate from within the network switch, in order to cool the various components of the switch from within. Considering the certain situation when some SMB might prefer having a fanless network switch, FS now has introduced a brand new S2800-24T4F fanless switch to meet the silent and cost-effective requirement for SMB customers. Let’s take a closer look at this energy-saving S2800-24T4F fanless switch.

fanless switch

What Is Fanless Switch?

In some scenarios, operating fans within the network switches is inevitable. It is the reason that the switches emanate so much heat, especially when multiple network switches are locked up into a rack along with many other active devices. At this time, fans play a important role to help cool various components within the network switch. However, the constant noise coming from the fans within the switch might be disturbing to everyone around the switch. In such situation, people might prefer to the fanless switches. Apart from being quiet, these switches are more reliable and utilize less power than their fan-cooled counterparts. Fanless design might be purposefully incorporated into the switches to increase their reliability. These switches are come with solid-state cooling apparatus instead of fans that help cool the various parts inside the switch and hence provide a higher degree of reliability.

FS S2800-24T4F Fanless Switch

FS S2800-24T4F is a kind of fanless and energy-saving Ethernet access switch, which is designed to meet the demand of cost-effective Gigabit access or aggregation for enterprise networks. For the advantage of silent and cost-saving design, it is perfect to use in SMBs, labs, schools and Internet cafes. In addition, it offers flexible port combination form to facilitate user operations as the result of the equipped 24×100/1000Base-T ports and 4x1GE Combo SFP ports. So you can directly connect to a high-performance storage server or deploy a long-distance uplink to another switch. Moreover, S2800-24T4F supports multiple configuration modes to make it easy for network management and maintenance. Also, high performance processor is adopted to provide full speed forwarding and line-dormant capacity to offer customs multitudinous service features.

s2800-24t4f-switch

Highlights & Benefits

  • Layer 2 Full Wire Speed Gigabit Forwarding Capability.

FS S2800-24T4F has up to 48Gbps backplane bandwidth and 42Mpps packet forwarding rate. And its performance will be not impacted by ACL / binding / attack protection and other functions.

  • Function Optimization for WEB Configuration of Internet Bar.

Customers can configure the port automatically or manually, and secure their network through using its IP+VLAN+MAC+Port binding functions.

  • Perfect Management and Maintenance.

The Web management interface of S2800-24T4F has been optimized for enterprise users, supporting SNMP, Telnet, and cluster. Looback port loopback detection and LLDP neighbor detection functionalities have also been provided.

Supported Optical Transceivers for S2800-24T4F

As being mentioned, the FS S2800-24T4F has 24 24×100/1000Base-T ports to achieve network connectivity. For these ports, you can use 100BASE SFP, 1000BASE SFP, BIDI SFP, CWDM SFP, DWDM SFP optical transceiver or 1000BASE-T SFP copper RJ-45 transceiver to achieve the link. FS provides many high-quality compatible SFP modules for S2800-24T4F fanless switch.

The main compatible SFP optical modules are listed in the chart below:

FS.COM P/N Part ID Type Wavelength Operating Distance Interface DOM Support
SFP-FB-GE-T 37767 100BASE-T / 100 m RJ-45, Cat5 No
37769 10/100BASE-T / 100 m RJ-45, Cat5 No
SFP-GB-GE-T 20036 10/100/1000BASE-T / 100 m RJ-45, Cat5 Yes
20057 1000BASE-T / 100 m RJ-45, Cat5 Yes
CWDM-SFP1G-ZX 23807 1000BASE-CWDM 1270 nm 80 km LC duplex,SMF Yes
47123 1000BASE-CWDM 1290 nm 80 km LC duplex,SMF Yes
47124 1000BASE-CWDM 1310 nm 80 km LC duplex,SMF Yes
47125 1000BASE-CWDM 1330 nm 80 km LC duplex,SMF Yes
47126 1000BASE-CWDM 1350 nm 80 km LC duplex,SMF Yes
47127 1000BASE-CWDM 1370 nm 80 km LC duplex,SMF Yes
47128 1000BASE-CWDM 1390 nm 80 km LC duplex,SMF Yes
47129 1000BASE-CWDM 1410 nm 80 km LC duplex,SMF Yes
47130 1000BASE-CWDM 1430 nm 80 km LC duplex,SMF Yes
47131 1000BASE-CWDM 1450 nm 80 km LC duplex,SMF Yes
47132 1000BASE-CWDM 1470 nm 80 km LC duplex,SMF Yes
47133 1000BASE-CWDM 1490 nm 80 km LC duplex,SMF Yes
47134 1000BASE-CWDM 1510 nm 80 km LC duplex,SMF Yes
47135 1000BASE-CWDM 1530 nm 80 km LC duplex,SMF Yes
47136 1000BASE-CWDM 1550 nm 80 km LC duplex,SMF Yes
47137 1000BASE-CWDM 1570 nm 80 km LC duplex,SMF Yes
47138 1000BASE-CWDM 1590 nm 80 km LC duplex,SMF Yes
47139 1000BASE-CWDM 1610 nm 80 km LC duplex,SMF Yes
Conclusion

Ethernet switches have become an integral part of networking because of the speed and efficiency with which they handle data traffic. At FS, we know very well how much our small and medium-sized clients need a reliable and affordable Ethernet switches. So we come with this S2800-24T4F fanless switch for you, which is assured with high-quality and a one-year limited warranty, including any quality problems during the free maintenance. Besides, all of FS.COM’s transceivers are tested for 100% functionality and guaranteed compatible for outstanding network performance. So does the above SFP transceivers, they are completely applicable to this S2800-24T4F switch. Compared to the other vendors’ optical modules, they are much cheaper. For more details, please visit www.fs.com.

Managed Switch VS. Unmanaged Switch: Which to Choose?

Switches are devices used in connecting multiple devices together on a Local Area Network (LAN). In terms of networking, the switch would serve as a controller, which allows the various devices to share information. Ethernet switches can be used in the home, a small office or at a location where multiple machines need to be hooked up. There are two basic kinds of switches: managed switches and unmanaged switches. The key difference between them lies in the fact that a managed switch can be configured and it can prioritize LAN traffic so that the most important information gets through. On the other hand, an unmanaged switch behaves like a “plug and play” device, which cannot be configured and simply allows the devices to communicate with one another. This blog will compare the difference between managed switch and unmanaged switch, and why would choose one over the other?

managed-switch-vs.-unmanaged-switch

Managed Switch

A managed switch is a device that can be configured. This capability provides greater network flexibility because the switch can be monitored and adjusted locally or remotely. With a managed switch, you have control over network traffic and network access. Managed switches are designed for intense workloads, high amounts of traffic and deployments where custom configurations are a necessity. When looking at managed switches, there are two types available: smart switches and fully managed switches. Smart switches have a limited number of options for configuration and are ideal for home and office use. Fully managed switches are targeted at servers and enterprises, offering a wide array of tools and features to manage the immediate network.

Managed switch

Unmanaged Switch

Unmanaged switches are basic plug-and-play switches with no remote configuration, management or monitoring options, although many can be locally monitored and configured via LED indicators and DIP switches. These inexpensive switches are typically used in small networks, such as home, SOHO or small businesses. In scenarios where the network traffic is light, all that is required is a way for the data to pass from one device to another. In this case there is no need for prioritizing the packets, as all the traffic will flow unimpeded. An unmanaged switch will fill this need without issues.

The Managed Switch Will Retain Predominance as the Switch of Choice

Managed and unmanaged switches can maintain stability through Spanning Tree Protocol (STP). This protocol can prevent your network from looping endlessly, because it can search for the disconnected device. However, the managed switch is still the best solution for long-range usability and network performance. And it will cover the trends in the near future.

benefits-of-managed-switches

Benefits of Managed Switches

Network Redundancy: Managed switches incorporate Spanning Tree Protocol (STP) to provide path redundancy in the network. STP provides redundant paths but prevents loops that are created by multiple active paths between switches, which makes job for a network administrator easier and also proves more profitable for a business.

Remote management: Managed switches use protocols such as or Simple Network Management Protocol (SNMP) for monitoring the devices on the network. SNMP helps to collect, organize and modify management information between network devices. So IT administrators can read the SNMP data, and then monitor the performance of the network from a remote location, and detect and repair network problems from a central location without having to physically inspect the switches and devices.

Security and Resilience: Managed switches enable complete control of data, bandwidth and traffic control over the Ethernet network. You can setup additional firewall rules directly into the switch. And managed switches support protocols which allow operators to restrict/control port access.

SFP: The benefit of having multi-rate SFP slots is the network flexible expansion possibility, which allows the user to be able to use 100Mbps and 1Gbps SFP modules for either multi or single-mode fibre optic (or copper) as needed. If requirements change, the SFP module can be replaced and easily protect your switch investment.

Support multiple VLAN as per requirement: Managed switches allow for the creation of multiple VLANs where an 8-port switch functionally can turn into two 4-port switches.

Prioritise bandwidth for data subsets: The switches are able to prioritise one type of traffic over another allowing more bandwidth to be allocated through the network.

The disadvantages of unmanaged switches
  • Open ports on unmanaged switches are a security risk
  • No resiliency = higher downtime
  • Unmanaged switches cannot prioritize traffic
  • Unmanaged switches cannot segment network traffic
  • Unmanaged switches have limited or no tools for monitoring network activity or performance
Conclusion

For end users, network visibility and control can be highly valued in their plants and they are willing to pay for it. Although managed switches are costlier than unmanaged switches, managed switches definitely have more benefits and consistent network performance. When the network requirements may be expanded or better control and monitoring over network traffic is needed, managed switches may be considered.

Compatible SFP Transceivers for HP 1810-48G Switch (J9660A)

Today, small and midsize businesses are embracing mobile and cloud technologies to improve employee productivity and engage with customers. More business needs an affordable, high-performance and secure wired and wireless infrastructure that can support the growing number of mobile devices and cloud-based applications. When asking for a recommendation for SMB switches, many people always recommend the HP because it has most of the same capabilities such as full management capability, rock solid operation and great support (as the Cisco), but at half the price. And HP 1810-48G switch is one of such SMB switches. This article intends to give a simple introduction to HP 1810-48G switch and provide compatible SFP transceiver solutions for it.

HP 1810-48G Switch (J9660A)

HP 1810-48G Switch (J9660A)

The HP 1810-48G switch is a basic smart managed Gigabit Ethernet Layer 2 switch that is designed for small businesses. This HP ProCurve 48 port gigabit switch has four additional true Gigabit Ethernet SFP ports (52 total active ports) for fiber connectivity, which supports Gigabit-SX, -LX, or 100-FX and SFP 1G RJ-45 copper connections. Besides, it supports flexible deployment options, including mounting on walls or ceilings, under tables, or desktop operation. More than anything, it comes with an anti-theft protection Kensington Lock slot, which allows switches to be secured in open-space deployments. A HP 1810-48G switch also has some customizable features, including VLANs, Spanning Tree and link aggregation trunking.

HP 1810-48G switch

Key Features or Benefits:

  • Customized operation using intuitive Web interface
  • Flexible connection and deployment options
  • Layer 2 operation at wire speeds
  • VLANs and link aggregation support
HP ProCurve Mini-GBICs and SFPs

HP ProCurve transceivers as the part of the networking accessories that are applied to their corresponding switches or routers. Thus, it is also important to get some knowledge of the HP ProCurve Mini-GBICs and SFPs. HP ProCurve Mini-GBICs and SFPs have three version: revision A, revision B and revision C. Though there is no big difference between these three version, some improvement will be added in the newest version. The “revision C” Mini-GBICs (eg. J4858C, J4859C, J4860C) are supported in all ProCurve products that support Mini-GBICs. In addition, “revision B” and “revision C” mini-GBICs can be used together in any ProCurve switch that supports mini-GBICs. FS.COM can support the 100% compatible HP ProCurve Mini-GBICs and SFPs at version A, B and C, such as J4858A/B/C, J4859A/B/C, J4860A/B/C.

HP Compatible SFP Transceivers for HP 1810-48G Switch (J9660A)

According to HP ProCurve Networking Mini-GBIC Support Matrix, we can easily find out which Mini-GBICs and SFPs are supported for HP 1810-48G Switch (J9660A).

HP X111 100M SFP LC FX Transceiver (J9054C)

The HP J9054C compatible SFP transceiver provides 100Base-FX throughput up to 2km over multi-mode fibre (MMF) at a wavelength of 1310nm using a LC connector. FS is guaranteed to be 100% compatible with the equivalent HP transceiver. This hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to comply with multi-source agreement (MSA) standards to ensure seamless network integration.

J9054C

HP X121 1G SFP LC SX Transceiver (J4858C)

This SFP (mini-GBIC) transceiver module is designed for use with HP network equipment and is equivalent to HP part number J4858C. It provides 100Base-FX throughput up to 550m over multi-mode fibre (MMF) at a wavelength of 850nm using a LC connector. The transceiver is hot-swappable input/output device which allows a Gigabit Ethernet port to link with a fibre optic network. And this transceiver may be mixed and deployed with other OEM or third party transceivers and will deliver seamless network performance.

J4858C

HP X121 1G SFP LC LX Transceiver (J4859C)

HP ProCurve J4859C 1000BASE-LX-LC Mini-GBIC is a small form factor pluggable (SFP) gigabit LX transceiver that provides a full-duplex gigabit solution up to 10 km (singlemode) or 550 m (multimode). It is an SFP format gigabit transceiver with LC connectors using LX technology.

J4859C

HP X121 1G SFP RJ45 T Transceiver (J8177C)

J8177C is a small form-factor pluggable (SFP) Gigabit copper transceiver with RJ45 connectors using 1000BaseT technology, that provides a full-duplex Gigabit solution up to 100m on Category 5 or better cable. It is guaranteed compatible for all HP switch and router product lines. This transceiver can be mixed and deployed with HP OEM transceivers for seamless network performance and interoperability.

J8177C

Precautions:

To remove the J8177C from a Mini-GBIC slot on the switch, follow this procedure:

1. Remove the attached cable from the Mini-GBIC.

2. Without forcing the latch, swivel the latch 90 degrees to the unlocked position.

CAUTION: Do not force the latch! If the latch does not easily swivel 90 degrees, move the latch back to the locked position, re-seat the Mini-GBIC by pressing it into the switch, then repeat step 2.

Conclusion

FS.COM is a professional manufacturer and supplier of optical networking solutions. We can supply 100% compatible fiber optic transceiver modules of many brands, like HP, Cisco, Dell, Juniper etc. with a incredible discount. About HP, you can find a full product line of our New HP transceivers with a good price and enjoy same-day shipping. In addition, according to your requirements, we welcome any inquiry for customized fiber optical transceiver. FS’s aim is offering the best quality products and perfect solutions, saving customers’s time and money, making customers enjoy personalization.

How to Choose a Suitable Network Switch?

A network switch is a small hardware device that centralizes communications among multiple connected devices within one local area network (LAN). Network switches come in different sizes, features and functions, so choosing a switch to match a particular network sometimes constitutes a daunting task. This blog will give you a few useful things to consider when choosing the appropriate switch for a layer in a particular network.

network switch

Network Switch Technology

While switching capabilities exist for several kinds of networks, including Ethernet, Fibre Channel, RapidIO, ATM, ITU-T G.hn and 802.11, network switch can operate at one or more layers of the OSI model. Switches provide multiple advantages in network designs. All switches provide the basic traffic filtering functions, which improves network bandwidth. Besides, the internal switching circuits allow traffic flows to simultaneously occur between multiple ports. Currently, mainstream network switches support Gigabit Ethernet speeds per switch port, but high-performance switches in data centers generally support 10 Gbps per link. Different models of network switches support varying numbers of connected devices. Home network switches provide 4/8 connection for Ethernet devices, while SMB switches typically support between 32 and 128 connections.

Considerations for Choosing the Suitable Network Switch

Careful planning before purchasing a switch will save you money. At the same time, it can help you ensure the equipment has the functionality that you organization is needed, or the switches can expand their capabilities as your requirements change and grow. Here are some suggestions you can use to help guide your switch purchase.

Connection Requirements

Connection requirements are a good place to start, since they usually dictate what types of switches will be needed, and they can affect pricing dramatically. Here are something you need to consider in advance:

1. Consider the number of users that your network will have to support

2. Consider your basic network infrastructure

3. Determine the network needs of the users (Fast Ethernet or Gigabit Ethernet)

4. Choose the role of the switch (core switch, distribution switch, access switch)

5. Pick a vendor and/or company (for example: Cisco, Juniper, HP, Dell, Arista, Brocade, FS.COM)

Number of ports

The number of users and the basic network infrastructure determine the number of ports. Common numbers of ports on network switches are 5, 8, 10, 24, and 48 ports. If you only have 5 or 6 users, then a small 8 port switch will probably be enough for your needs. Number of ports is one of the biggest factors in the cost of a switch, so if you buy a switch that only supports the number of users that you will have, you will likely save a fair amount of money.

FS network switch

Port Speeds and Types

Fixed switches come in Fast Ethernet and Gigabit Ethernet. Fast Ethernet allows up to 100 Mb/s of traffic per switch port while Gigabit Ethernet allows up to 1000 Mb/s of traffic per switch port. These ports may be a combination of SFP/SFP+ slots for fiber connectivity, but more commonly they are copper ports with RJ-45 connectors on the front, allowing for distances up to 100 meters. With Fiber SFP modules, you can go distances up to 40 kilometers. Currently, Gigabit Ethernet is the most popular interface speed though Fast Ethernet is still widely used, especially in price-sensitive environments.

Link Aggregation

If you have a 24-port switch, with all its ports capable of running at gigabit speeds, you could generate up to 24 Gb/s of network traffic. If the switch is connected to the rest of the network by a single network cable, it can only forward 1 Gb/s of the data to the rest of that network. Due to the contention for bandwidth, the data would forward more slowly. That results in 1 out of 24 wire speed available to each of the 24 devices connected to the switch. Therefore, the more ports you have on a switch to support bandwidth aggregation, the more speed you have on your network traffic.

Performance

Core Layer Switches: These types of switches are routed at the core layer of a topology, which is the high-speed backbone of the network and requires switches that can handle very high forwarding rates. The switch that operates in this area also needs to support link aggregation to ensure adequate bandwidth coming into the core from the distribution layer switches. Because of the high workload carried by core layer switches, they tend to operate hotter than access or distribution layer switches. Virtually, core layer switches have the ability to swap cooling fans without having to turn the switch off.

Distribution Layer Switches: Distribution layer switches plays a very important role on the network. They collect the data from all the access layer switches and forward it to the core layer switches. Distribution layer switches provides advanced security policies that can be applied to network traffic using Access Control Lists (ACL). This type of security allows the switch to prevent certain types of traffic and permit others.

Access Layer Switches: Access layer switches facilitate the connection of end node devices to the network. For this reason, they need to support features such as port security, VLANs, Fast Ethernet/Gigabit Ethernet, Power over Internet, and link aggregation. Port security allows the switch to decide how many or what type of devices are permitted to connect to the switch.

The Three-Layered Hierarchical Model

Power requirements

At any layer, a modern switch may implement power over Ethernet (PoE), which avoids the need for attached devices, such as a VoIP phone or wireless access point, to have a separate power supply. Since switches can have redundant power circuits connected to uninterruptible power supplies, the connected device can continue operating even when regular office power fails. Another characteristic you consider when choosing a switch is PoE. This is the ability of the switch to deliver power to a device over the existing Ethernet cabling. To find the switch that is right for you, all you need to do is choose a switch according to your power needs. When connecting to desktops which do not require PoE switches, the non-PoE switches are a more cost-effective option.

Future Growth: Stackable VS. Standalone

As the network grows, you will need more switches to provide network connectivity to the growing number of devices in the network. When using standalone switches, each switch is managed, troubleshot, and configured as an individual entity. In contrast, stackable switches provide a way to simplify and increase the availability of the network. With a true stackable switch, you can connect the stack members in a ring. If a port or cable fails, the stack will automatically route around that failure, many times at microsecond speeds. You can also add or subtract stack members and have it automatically recognized and added into the stack.

Conclusion

As you can see, there is a multitude of switch options to choose from. So, have a close look at your current deployment and future needs to determine the right switch for your network. FS.COM is one of the network switch vendors, if you have any demand, welcome to visit our website.

How Much Do You Know about Ethernet Switches?

Today, all plants are virtually networked via Ethernet. High requirements are placed on the network infrastructure and network components. Ethernet switches are the integral piece of IT infrastructure, capable of receiving, processing and transmitting data between two devices connected by a physical layer. Due to the increasing application of big data analytics and cloud-based services in various end-user segments, data centers are envisaged to fuel the adoption of Ethernet switches. The augmented global demand for data centers is the key driver for the growth of Ethernet switches market. To satisfy the large and ever-increasing market for Ethernet switches, there are many varieties of switches offered different purposes. This article will help you get a deep understanding of the different types of Ethernet switches.

What is an Ethernet Switch?

A Ethernet switch is a tool for connections between the systems and equipment to forward data selectively to one or more connected devices on the same network. These connections are generally created through the use of structured cabling that links both the station side and the device that you are trying to share data with, such as a server or another computer. In this way, Ethernet switches can control the flow of traffic passing through a network, maximizing the network’s efficiency and security. More advanced Ethernet switches, called managed switches, are also capable of providing additional functions, such as network load balancing, address translation or data encryption and decryption.

FS Ethernet switches

How Dose an Ethernet Switch Work?

Ethernet switches link Ethernet devices together by relaying Ethernet frames between the devices connected to the switches. By moving Ethernet frames between the switch ports, a switch links the traffic carried by the individual network connections into a larger Ethernet network. Ethernet switches perform their linking function by bridging Ethernet frames between Ethernet segments. To do this, they copy Ethernet frames from one switch port to another, based on the Media Access Control (MAC) addresses in the Ethernet frames. Ethernet bridging was initially defined in the 802.1D IEEE Standard for Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges. The standardization of bridging operations in switches makes it possible to buy switches from different vendors that will work together when combined in a network design. That’s the result of lots of hard work on the part of the standards engineers to define a set of standards that vendors could agree upon and implement in their switch designs.

diagram of Ethernet switches connections

Different Types of Ethernet Switches

Ethernet switches are broadly categorized into two main categories – modular switches and fixed switches. Modular switches allow you to add expansion modules into the switches as needed, thereby delivering the best flexibility to address changing networks. Fixed switches are switches with a fixed number of ports and are typically not expandable. This category can be broken down even further into unmanaged, lightly managed, and fully managed.

Unmanaged Switch

An unmanaged switch is mostly used in home networks and small companies or businesses, as it is the most cost effective for deployment scenarios that require only basic layer 2 switching and connectivity. The unmanaged switch is not configurable and have all of their programming built in. It is ready to work straight out of the box. And it is the easiest and simplest installation, because of its small cable connections. An unmanaged switch is perfect in this situation since it requires the least amount of investment with regards to both expense and time.

Smart Switch / Lightly Managed Switch

A smart switch is the middle ground between the unmanaged and fully managed switches. These smart switches offer limited customization, but do possess the granular control abilities that a fully managed switch has. In addition, smart switches offer certain levels of management, quality-of-service (QoS), security, but they are lighter in capabilities and less scalable than the managed switches. Smart switches tend to have a management interface that is more simplified than what managed switches offer. They also offer the capability to set up options like Quality of Service (QoS) and VLANs, which can be helpful if your organization has VoIP phones, or if you want to segment your network into work groups. Therefore, smart switches are the cost-effective alternative to managed switches. They are still valid choices for the regular consumer, as they are generally easy to use and you can glean a bit more information off of them on how your network is configured compared to unmanaged switches.

Fully Managed Switch / Enterprise Managed Switch

Managed Layer 2 Switch: A modern managed switch provides all the functionality of an unmanaged switch. In addition, it can control and configure the behavior of the device. This typically introduces the ability to support virtual LANs (VLANs), which is why almost all organizations deploy managed switches versus their cheaper alternatives.

Managed Layer 3 Switch (Multilayer Switch): This type of switch provides a mix of functionality between that of a managed Layer 2 switch and a router. The amount of router function overlap is highly dependent on the switch model. At the highest level, a multilayer switch provides better performance for LAN routing than almost any standard router on the market, because these switches are designed to offload a lot of this functionality to hardware.

data-center-network-architecture

Managed switches are designed to deliver the most comprehensive set of features to provide the best application experience, the highest levels of security, the most precise control and management of the network, and offer the greatest scalability in the fixed configuration category of switches. As a result, they are usually deployed as aggregation/access switches in very large networks or as core switches in relatively smaller networks. Managed switches should support both L2 switching and L3 IP routing, though you’ll find some with only L2 switching support.

Conclusion

The Ethernet switch plays an integral role in most modern Ethernet local area networks (LANs). Mid-to-large sized LANs contain a number of linked managed switches. Small office/home office (SOHO) applications typically use a single unmanaged switch. This article has introduced the different types of switches. Depending on the number of devices you have and the number of people using the network, you have to choose the right kind of switch that fits your space. FS.COM has provided a comprehensive set of Ethernet switches. If you have any requirements, welcome to visit our website for more detailed information.