Unlocking the Potential of 800G Transceivers: Types and Applications

With the ever-increasing need for swift data transmission, the 800G transceiver has garnered considerable interest for its attributes such as high bandwidth, rapid transmission rates, outstanding performance, compact design, and future-proof compatibility. In this article, we aim to provide an overview of the diverse range of 800G optical modules and delve into their applications to assist you in making an informed decision when selecting 800G transceivers.

Exploring the Range of 800G Transceivers

Based on the single-channel rate, 800G transceivers can be categorised into 100G and 200G variants. The diagram below illustrates the corresponding architectures. Single-channel 100G optical modules can be deployed more readily, whereas 200G optical modules demand more sophisticated optical devices and necessitate a gearbox for conversion. This section primarily focuses on single-channel 100G modules.

Single-Mode 800G Transceivers:

The 800G single-mode optical transceiver is suitable for long-distance optical fibre transmission and can cover a wider network range.

800G DR8, 800G PSM8 & 800G 2xDR4:

These three standards share similar internal architectures, featuring 8 Tx and 8 Rx, with a single-channel rate of 100 Gbps, and requiring 16 optical fibers.

The 800G DR8 optical module utilises 100G PAM4 and 8-channel single-mode parallel technology, enabling transmission distances of up to 500m through single-mode optical fibre. Primarily deployed in data centres, it serves 800G-800G, 800G-400G, and 800G-100G interconnections.

The 800G PSM8 makes use of CWDM technology with 8 optical channels, each capable of delivering 100Gbps. It supports a transmission distance of 100m, making it well-suited for long-distance transmission and efficient fibre resource sharing.

On the other hand, the 800G 2DR4 configuration denotes 2x “400G-DR4” interfaces. It features 2x MPO-12 connectors, allowing for the creation of 2 physically distinct 400G-DR4 links from each 800G transceiver without the need for optical breakout cables. As illustrated in the figure below, it can be connected to 400G DR4 transceivers and supports a transmission distance of 500m, facilitating smooth data centre upgrades.

800G 2FR4/2LR4/FR4/FR8:

FR and LR stand for Fixed Reach and Long Reach.

800G 2xFR4 and 800G 2xLR4 share similar internal structures. They operate with 4 wavelengths at a single-channel rate of 100 Gbps. Using Mux, they reduce the required optical fibres to 4, as depicted in the figure below. 800G 2xFR4 can transmit up to 2km, while 800G 2xLR4 supports distances of up to 10km. Both standards use dual CS or dual duplex LC interfaces for optical connectivity. They are suitable for various applications including 800G Ethernet, breakout 2x 400G FR4/LR4, data centres, and cloud networks.

800G FR4 follows a scheme that utilises four wavelengths and PAM4 technology, operating at a single-channel rate of 200 Gbps and requiring two optical fibres, as shown in the figure below. It supports a transmission distance of 2km and is generally used in data centre interconnection, high-performance computing, storage networks, etc.

Lastly, the 800G FR8 utilises eight wavelengths, with each operating at 100 Gbps, as illustrated in the figure below. It necessitates two optical fibres and can transmit up to 2km. Additionally, the 800G FR8 offers increased transmission capacity. Typical applications include wide-area networking, data centre interconnection, and more.

Multimode 800G Transceivers

In multimode applications with transmission distances under 100 meters, there are primarily two standards for 800G optical transceivers.

800G SR8

The 800G SR8 optical transceiver utilises VCSEL technology, offering advantages such as low power consumption, cost-effectiveness, and high reliability. With a wavelength of 850nm and a single-channel speed of 100Gbps PAM4, it requires 16 optical fibres, representing an enhanced version of the 400G SR4 with double the channels. Capable of achieving high-speed 800G data interconnection within 100m, it enhances data transmission efficiency in data centres. It employs either an MPO16 or Dual MPO-12 optical interface, as shown in the diagram. Typically used in various scenarios such as data centres, communication networks, and supercomputing, the 800G SR8 optical module is versatile and efficient.

800G SR4.2

800G SR4.2 optical transceiver employs two wavelengths, 850nm and 910nm, enabling bidirectional transmission over a single fibre, commonly known as bi-directional transmission. The module incorporates a DeMux component to separate the two wavelengths. With a single-channel rate of 100 Gbps PAM4, it requires 8 optical fibres, half the amount needed for SR8. The 800G SR4.2 makes use of a 4+4 fibre setup within an MPO-12 connector interface, offering a seamless transition from 400G to 800G without the need for alterations to the fibre infrastructure.

Unleashing Potential: Applications of 800G Transceiver

In the realm of high-performance networking, the evolution of 800G transceivers has ushered in a new era of possibilities. The high-speed, efficient, and reliable data transmission capabilities of 800G transceivers have led to their widespread adoption across multiple scenarios.

Data Center Connectivity

Data Center Interconnectivity is one of the primary domains where the prowess of 800G optical modules shines. With InfiniBand, these modules facilitate seamless communication between data centers, powering the backbone of modern interconnected infrastructures. The substantial increase in data processing capability and data transmission efficiency in data centres has been essential to meet the evolving demands of cloud computing and big data processing.

High-Performance Computing

In the arena of High-Performance Computing, where processing demands are ceaselessly escalating, the efficiency of 800G transceives becomes a game-changer. The modules ensure rapid data transfer, reducing latency, and optimizing overall system performance.

5G and Communication Networks

The surge of 5G and Communication Networks demands not only speed but also reliability. Enter the 800G QSFP and QSFP-dd transceivers, engineered to meet the demands of next-gen communication networks. Their advanced capabilities bolster the 5G architecture, ensuring a robust and responsive network infrastructure. The development has also fostered advancements in various fields such as the Internet of Things (IoT), Industrial Internet, and autonomous driving.

In the Metropolitan Area Network (Man) Domain

The metropolitan area network (MAN) serves as a bridge between local area networks (LANs) and wide area networks (WANs) across different locations, enabling high-speed data transmission between these locations through fibre optic networks. The high transmission rate of 800G optical modules can provide higher bandwidth and more stable connections, reducing data transmission delays between MANs. This improves data transfer rates and network responsiveness, fostering urban informatization and economic development.

Conclusion

800G optical transceivers, integral to the forthcoming high-speed optical communication era, come in diverse types catering to various application requirements. A comprehensive grasp of these types and their respective application domains, along with addressing common queries about 800G transceivers, will facilitate the advancement of data transmission technology. The mastery of this cutting-edge technology enables us to adeptly navigate the challenges and prospects presented by the digital era.

How FS can Help

FS offers a range of 800G transceivers to meet Ethernet and InfiniBand network connectivity needs. Additionally, FS’s overseas warehouses enable swift deliveries. Visit the FS website now for more product and solution information, and benefit from comprehensive service support.

Exploring FS 800G Transceivers: Your FAQs Answered

With the rapid development of technologies such as cloud computing, the Internet of Things (IoT) and big data, there’s a growing need for network bandwidth and faster transmission speeds. The introduction of the 800G module addresses this demand for high-speed data transmission. FS 800G transceivers incorporate advanced modulation and demodulation techniques alongside high-density optoelectronic devices, enabling them to achieve higher transmission rates in a compact form factor. Here are some FAQs about FS 800G optical transceivers.

What form-factors are used for 800G transceivers?

800G transceivers share the same form factors as 400G optics, namely OSFP and QSFP-DD. FS supports both form factors.

OSFP:

The OSFP, or “Octal Small Form-factor Pluggable,” derives its name from its 8 electrical lanes, each modulated at 100Gb/s for a total bandwidth of 800Gb/s in 800G configurations.

QSFP-DD:

The QSFP-DD, or “Quad Small Form-factor Pluggable – Double Density,” retains the QSFP form factor but adds an extra row of electrical contacts for more high-speed electrical lanes. With 8 lanes operating at 100Gb/s each, the QSFP-DD delivers a total bandwidth of 800Gb/s.

QSFP-DD and OSFP are distinct optical module packaging types. QSFP-DD, being smaller, is ideal for high-density port configurations. And OSFP consumes slightly more power compared to QSFP-DD. Additionally, QSFP-DD is fully compatible with QSFP56, QSFP28, and QSFP+, whereas OSFP is not.

For more details on the differences between 800G OSFP and QSFP-DD packaging, please refer to:800G Transceiver Overview: QSFP-DD and OSFP Packages

Can OSFPs be plugged into a QSFP-DD port, or QSFP-DD’s plugged into an OSFP port?

No. The OSFP and the QSFP-DD are two physically distinct form factors. OSFP systems require the use of OSFP optics and cables, while QSFP-DD systems necessitate QSFP-DD optics and cables.

How many electrical lanes are used by 800G transceivers?

The 800G transceivers utilise 8x electrical lanes in each direction, with 8 transmit lanes and 8 receive lanes.

What are the speed and modulation formats used by 800G OSFP/QSFP-DD modules?

As mentioned earlier, all 800G modules utilise 8x electrical lanes bidirectionally, with 8 transmit lanes and 8 receive lanes. Each lane operates at a data rate of 100G PAM4, yielding a total module bandwidth of 800Gb/s. Furthermore, the optical output of all 800G transceivers consists of 8 optical waves, each wave modulated at 100G PAM4 per lane.

What is the significance of PAM4 or NRZ modulation for electrical or optical channels?

NRZ, which stands for “Non Return to Zero,” refers to a modulation scheme used in electrical or optical data channels. It involves two permissible amplitude levels or symbols, with one level representing a digital ‘1’ and the other representing a digital ‘0’. NRZ is commonly employed for data transmission up to 25Gb/s and is the simplest method for transmitting digital data. An example of an NRZ waveform, along with an eye diagram illustrating NRZ data, is depicted below. An eye diagram provides a visual representation of a modulation scheme, with each symbol overlapping one another.

PAM4, on the other hand, stands for Pulse Amplitude Modulation – 4, with the ‘4’ signifying the number of distinct amplitude levels or symbols in the electrical or optical signal carrying digital data. In this case, each amplitude level or symbol represents two bits of digital data. Consequently, a PAM4 waveform can transmit twice as many bits as an NRZ waveform at the same symbol or “Baud” rate. The diagram below showcases a PAM4 waveform along with an eye diagram for PAM4 data.

For more information on the comparison between NRZ and PAM4, please refer to:NRZ vs. PAM4 Modulation Techniques

What is the maximum power consumption of 800G OSFP and QSFP-DD transceivers?

The power consumption of 800G transceivers varies between 13W and 18W per port. To obtain specific power consumption values for individual modules, please consult each transceiver’s datasheet.

Do FS 800G transceivers support backward compatibility?

The backward compatibility of 800G transceivers depends on the specific design and implementation. Some 800G transceivers are designed to be backwards compatible with 400G or 200G transceivers, allowing for a smooth transition and interoperability within existing networks. For example, the FS 800G OSFP SR8 transceiver supports 800G ethernet and breakout 2x 400G SR4 applications. However, it is important to check with the module manufacturer for specific compatibility details.

What standards govern 800G transceivers?

Standards for 800G transceivers, such as form factor specifications, electrical interfaces, and signalling protocols, are typically governed by industry consortiums like the IEEE (Institute of Electrical and Electronics Engineers), the OIF (Optical Internetworking Forum), and the QSFP-DD MSA (Quad Small Form Factor Pluggable – Double Density Multi-Source Agreement).

What 800G Transceivers are available from FS?

FS supports 800G optical transceivers in both OSFP and QSFP-DD form factors. The key features of an FS 800G optical module typically include supporting multiple modulation formats, high data transfer rates, low power consumption, advanced error correction mechanisms, compact form factors (e.g., QSFP-DD or OSFP), and interoperability with existing network infrastructure. The tables below summarise the 800G transceiver connectivity options supported.

QSFP-DD Part No.Product DescriptionOSFP Part No.Product Description
QDD-SR8-800GGeneric Compatible QSFP-DD 800GBASE-SR8 PAM4 850nm 50m DOM MPO-16/APC MMF Optical Transceiver ModuleOSFP-SR8-800GNVIDIA InfiniBand MMA4Z00-NS Compatible OSFP 800G SR8 PAM4 2 x SR4 850nm 50m DOM Dual MPO-12/APC NDR MMF Optical Transceiver Module, Finned Top
QDD-DR8-800GGeneric Compatible QSFP-DD 800GBASE-DR8 PAM4 1310nm 500m DOM MPO-16/APC SMF Optical Transceiver Module, Support 2 x 400G-DR4 and 8 x 100G-DROSFP-DR8-800GNVIDIA InfiniBand MMS4X00-NM Compatible OSFP 800G DR8 PAM4 2 x DR4 1310nm 500m DOM Dual MPO-12/APC NDR SMF Optical Transceiver Module, Finned Top
QDD800-PLR8-B1Generic Compatible QSFP-DD 800GBASE-PLR8 PAM4 1310nm 10km DOM MPO-16/APC SMF Optical Transceiver Module, Support 2 x 400G-PLR4 and 8 x 100G-LROSFP-2FR4-800GNVIDIA InfiniBand MMS4X50-NM Compatible OSFP 800G 2FR4 PAM4 1310nm 2km DOM Dual Duplex LC/UPC NDR SMF Optical Transceiver Module, Finned Top

What are the advantages of upgrading to 800G technology?

Moving to 800G technology offers several benefits for network infrastructure and data-intensive applications:

  1. Increased Bandwidth: 800G technology offers a significant increase in bandwidth, enabling faster and more efficient data transmission, meeting the growing demand for high-speed data transfer across various industries.
  2. Higher Data Rates: With 800G technology, data rates of up to 800Gbps can be achieved, enabling faster data processing, reduced latency, and improved overall network performance.
  3. Future-Proofing: Adopting 800G technology allows organizations to future-proof their network infrastructure, ensuring compatibility with upcoming technologies and applications.

Conclusion

The advent of 800G technology represents a pivotal advancement in addressing the escalating demands for network bandwidth and faster transmission speeds in our rapidly evolving digital landscape. FS 800G transceivers, with their seamless compatibility with existing network infrastructure, offer a compelling solution for organisations seeking to enhance their data transmission capabilities.

Upgrade to FS 800G optical transceivers today to experience unparalleled performance, and increased bandwidth for the challenges and opportunities of tomorrow.

Unveiling 800G Transceivers: QSFP-DD vs. OSFP Packages

While the current surge in demand is for 400G optical modules, the 800G optical network is gearing up for high-speed, high-density ports and low-latency DCI. The 800G transceiver can handle 8 billion bits per second, over twice the capacity of the previous 400G generation. This article delves into the key 800G module packages: QSFP-DD and OSFP.

What Is the Development Trend of 800G Transceiver Packaging?

The optical module is a crucial optoelectronic device facilitating photoelectric conversion in optical communication, essential to the industry. From GBIC to smaller SFP and now 800G QSFP-DD and OSFP, fibre transceiver form factors have evolved. The 800G transceiver’s progress focuses on speed, miniaturisation, and hot-swappable capability. Its applications span Ethernet, CWDM/DWDM, connectors, Fibre Channels, wired and wireless access, covering both data communication and telecom markets.

800G Transceiver Form Factors Advantages

800G QSFP-DD Form Factor:

The QSFP-DD is a dual-density, four-channel small pluggable high-speed transceiver, currently favoured for 800G optical applications, aiding data centres in flexible scalability. It employs 8-channel electrical interfaces, supporting rates up to 25Gb/s (NRZ modulation) or 50Gb/s (PAM4 modulation) per channel, offering aggregation solutions of up to 200Gb/s or 400Gb/s.

Advantages of the 800G QSFP-DD:

  1. Backward compatibility with QSFP+/QSFP28/QSFP56 packages.
  2. Utilises a 2×1 stacked integrated cage and connector, supporting single-height and double-height cage connector systems.
  3. Features SMT connectors and 1xN cages, optimising heat capacity to at least 12 watts per module, reducing heat dissipation costs.
  4. Designed with flexibility in mind by the MSA working group, adopting ASIC design, supporting various interface rates, and maintaining backward compatibility (QSFP+/QSFP28), reducing port and deployment costs.

800G OSFP Form Factor:

The OSFP represents a new generation of optical modules, smaller than CFP8 yet slightly larger than QSFP-DD. It features eight high-speed electrical channels supporting 32 OSFP ports on a 1U front panel, enhanced by an integrated heat sink for superior heat dissipation.

Advantages of the 800G OSFP:

  1. OSFP is designed with an 8-channel (Octal or 8-lane) configuration, supporting a total throughput of up to 800G, enabling greater bandwidth density.
  2. Its support for more channels and higher data transfer rates translates to enhanced performance and longer transmission distances.
  3. The OSFP module boasts excellent thermal design, capable of handling higher power consumption effectively.
  4. With a larger form factor, OSFP is poised to support higher rates in the future, potentially reaching 1.6T or higher due to its increased power handling capacity.

800G Transceiver Form Factors Parameter Comparison:

QSFP-DDOSFP
Size(length*width*height)89.4mm*18.35mm*8.5mm107.8mm*22.58mm*13.0mm
Electrical Lanes88
Single Lane Rate25Gbps/50Gbps/100Gbps25Gbps/50Gbps/100Gbps
Total Max Data Rate200G/400G/800G200G/400G/800G
ModulationNRZ/PAM4NRZ/PAM4
Backward Compatibility with QSFP+/QSFP28YesNo
Port density in 1U3636
Bandwidth in 1U14.4Tb/s14.4Tb/s
Power consumption Upper Threshold12W15W
ProductsTransceiver Modules; DAC & AOC cablesTransceiver Modules; DAC & AOC cables

Fibre producers favour OSFP and QSFP-DD. While the latter is typically preferred for telecommunications applications, the former is seen as more suitable for data centre environments.

How to Choose 800G Transceiver for Your Data Center?

To select the appropriate 800G transceiver for your network application, thorough evaluation of factors like transmission distance, fibre type, and form factor is crucial.

The 800G QSFP-DD module utilises Broadcom 7nm DSP chip and COB packaging, with an MTP/MPO-16 connector. However, different models of the 800G QSFP-DD module vary in power consumption and transmission distance. It is suitable for high-speed network environments such as data centres, cloud computing, and large-scale networks, meeting the demand for high bandwidth and large-capacity data transmission.

FS P/NPower ConsumptionDistanceSMF/MMF
QDD-SR8-800G≤13W50mMMF
QDD800-PLR8-B1≤18W10kmSMF
QDD800-XDR8-B1≤18W2kmSMF
QDD-DR8-800G≤18W500mSMF

The 800G OSFP module also features Broadcom 7nm DSP chip and COB packaging. However, it comes in two types: Ethernet and Infinite Bandwidth, with variations in power consumption and connectors between different models. It is suitable for networks like data centres, cloud computing, and ultra-large-scale networks.

FS P/NPower ConsumptionConnectorDistanceSMF/MMF
OSFP800-2LR4-A2≤18WDual LC Duplex10kmSMF
OSFP800-PLR8-B1≤16.5WMTP/MPO-1610kmSMF
OSFP800-PLR8-B2≤16.5WDual MTP/MPO-1210kmSMF
OSFP-2FR4-800G≤18WDual LC Duplex2kmSMF
OSFP800-XDR8-B1≤16.5WMTP/MPO-162kmSMF
OSFP800-XDR8-B2≤16.5WDual MTP/MPO-122kmSMF
OSFP800-DR8-B1≤16.5WMTP/MPO-16500mSMF
OSFP-DR8-800G≤16WDual MTP/MPO-12500mSMF
OSFP-SR8-800G≤15WDual MTP/MPO-1250mMMF
OSFP-DR8-800G≤16.5WDual MTP/MPO-12500mSMF
OSFP-2FR4-800G≤16.5WDual MTP/MPO-122kmSMF

Conclusion

As technology continues to progress and innovate, we anticipate 800G optical modules will increasingly contribute to practical applications and drive advancements in the digital communication sector.

FS offers a range of 800G optical modules to meet your network construction needs. Visit the FS website for information and enjoy free technical support.

Managed vs Unmanaged vs Smart Switch: Understanding the Distinctions

Switches form the backbone of LANs, efficiently connecting devices within a specific LAN and ensuring effective data transmission among them. There are three main types of switches: managed switches, smart managed switches, and unmanaged switches. Choosing the right switch during network infrastructure upgrades can be challenging. In this article, we delve into the differences between these three types of switches to help determine which one can meet your actual network requirements.

What are Managed Switches, Unmanaged Switches and Smart Switches?

Managed switches typically use SNMP protocol, allowing users to monitor the switch and its port statuses, enabling them to read throughput, port utilisation, etc. These switches are designed and configured for high workloads, high traffic, and custom deployments. In large data centres and enterprise networks, managed switches are often used in the core layer of the network.

Unmanaged switches, also known as dumb switches, are plug-and-play devices with no remote configuration, management, or monitoring options. You cannot log in to an unmanaged switch or read any port utilisation or throughput of the devices. However, unmanaged switches are easy to set up and are used in small networks or adding temporary device groups to large networks to expand Ethernet port counts and connect network hotspots or edge devices to small independent networks.

Smart managed switches are managed through a web browser, allowing users to maintain their network through intuitive guidance. These smart Ethernet switches are particularly suitable for enterprises needing remote secure management and troubleshooting, enabling network administrators to monitor and control traffic for optimal network performance and reliability. Web smart managed switches have become a viable solution for small and medium-sized enterprises, with the advantage of being able to change the switch configuration to meet specific network requirements.

What is the Difference Between Them?

Next, we will elaborate on the differences between these three types of switches from the following three aspects to help you lay the groundwork for purchasing.

Configuration and Network Performance

Managed switches allow administrators to configure, monitor, and manage them through interfaces such as Command Line Interface (CLI), web interface, or SNMP. They support advanced features like VLAN segmentation, network monitoring, traffic control, protocol support, etc. Additionally, their advanced features enable users to recover data in case of device or network failures. On the other hand, unmanaged switches come with pre-installed configurations that prevent you from making changes to the network and do not support any form of configuration or management. Smart managed switches, positioned between managed and unmanaged switches, offer partial management features such as VLANs, QoS, etc., but their configuration and management options are not as extensive as fully managed switches and are typically done through a web interface.

Security Features

The advanced features of managed switches help identify and swiftly eliminate active threats while protecting and controlling data. Unmanaged switches do not provide any security features. In contrast, smart managed switches, while also offering some security features, usually do not match the comprehensiveness or sophistication of managed switches.

Cost

Due to the lack of management features, unmanaged switches are the least expensive. Managed switches typically have the highest prices due to the advanced features and management capabilities they provide. Smart managed switches, however, tend to be lower in cost compared to fully managed switches.

FeaturesPerformanceSecurityCostApplication
Managed SwitchComprehensive functionsMonitoring and controlling a whole networkHigh-levels of network securityExpensiveData center, large size enterprise networks
Smart Managed SwitchLimited but intelligent functionsIntelligent manage via a Web browserBetter network securityCheapSMBs, home offices
Unmanaged SwitchFixed configurationPlug and play with limited configurationNo security capabilitiesAffordableHome, conference rooms

How to Select the Appropriate Switch?

After understanding the main differences between managed, unmanaged, and smart managed switches, you should choose the appropriate switch type based on your actual needs. Here are the applications of these three types of switches, which you can consider when making a purchase:

  • Managed switches are suitable for environments that require highly customised and precise network management, such as large enterprise networks, data centres, or scenarios requiring complex network policies and security controls.
  • Smart managed switches are suitable for small and medium-sized enterprises or departmental networks that require a certain level of network management and flexible configuration but may not have the resources or need to maintain the complex settings of a fully managed switch.
  • Unmanaged switches are ideal for home use, small offices, or any simple network environment that does not require complex configuration and management. Unmanaged switches are the ideal choice when the budget is limited, and network requirements are straightforward.

In brief, the choice of switch type depends on your network requirements, budget, and how much time you are willing to invest in network management. If you need high control and customisation capabilities, a managed switch is the best choice. If you are looking for cost-effectiveness and a certain level of control, a smart managed switch may be more suitable. For the most basic network needs, an unmanaged switch provides a simpler and more economical solution.

Conclusion

Ultimately, selecting the appropriate switch type is essential to achieve optimal network performance and efficiency. It is important to consider your network requirements, budget, and management preferences when making this decision for your network infrastructure.

As a leading global provider of networking products and solutions, FS not only offers many types of switches, but also customised solutions for your business network. For more product or technology-related knowledge, you can visit FS Community.

Discovering Powerful FS Enterprise Switches for Your Network

Enterprise switches are specifically designed for networks with multiple switches and connections, often referred to as campus LAN switches. These switches are tailored to meet the needs of enterprise networks, which typically follow a three-tier hierarchical design comprising core, aggregation, and access layers. Each layer serves distinct functions within the network architecture. In this guide, we’ll delve into the intricacies of enterprise switches and discuss important factors to consider when buying them.

Data Centre, Enterprise, and Home Network Switches: Key Differences

Switch vendors provide network switches designed for different network environments. The following comparison will help you understand more about enterprise switches:

Data Centre Switches

These switches have high port density and bandwidth requirements, handling both north-south traffic (traffic between data centre external users and servers or between data centre servers and the Internet) and east-west traffic (traffic between servers within the data centre).

Enterprise Switches

They need to track and monitor users and endpoint devices to protect each connection point from security issues. Some have special features to meet specific network environments, such as PoE capabilities. With PoE technology, enterprise network switches can manage the power consumption of many endpoint devices connected to the switch.

Home Network Switches

Home network traffic is not high, meaning the requirements for switches are much lower. In most cases, switches only need to extend network connections and transfer data from one device to another without handling data congestion. Unmanaged plug-and-play switches are often used as the perfect solution for home networks because they are easy to manage, require no configuration, and are more cost-effective than managed switches.

For SOHO offices with fewer than 10 users, a single 16-port Ethernet switch is usually sufficient. However, for tech-savvy users who like to build fast, secure home networks, managed switches are often the preferred choice.

Selecting the Ideal Switch: Data Centre vs. Enterprise Networks

For large enterprise networks, redundancy in the uplink links such as aggregation and core layers should be much higher than in the access layer. This means that high availability should be the primary consideration when designing the network. To cope with high traffic volumes and minimize the risk of failures, it’s advisable to deploy two or more aggregation or core layer switches at each level. This ensures that the failure of one switch does not affect the other.

In complex networks with a large number of servers to manage, network virtualization is needed to optimise network speed and reliability. Data centre switches offer richer functionality compared to traditional LAN enterprise switches, making them crucial for the successful deployment of high-density virtual machine environments and handling the increasing east-west traffic associated with virtualization.

Key Considerations Before Selecting Enterprise Switches

Ethernet switches play a crucial role in enterprise networks, regardless of whether it’s a small or large-scale network. Before you decide to buy enterprise switches, there are several criteria you should consider:

Network Planning

Identify your specific needs, including network scale, purpose, devices to be connected, and future network plans. For small businesses with fewer than 200 users and no expansion plans, a two-tier architecture might suffice. Medium to large enterprises typically require a three-tier hierarchical network model, comprising access, distribution, and core layer switches.

Evaluate Enterprise Switches

Once you’ve established your network architecture, delve deeper into information to make an informed decision.

  • Port Speeds and Wiring Connections: Modern enterprise switches support various port speeds such as 1G Ethernet, 10GE, 40GE, and 100GE. Consider whether you need RJ45 ports for copper connections or SFP/SFP+ ports for fibre connections based on your wiring infrastructure.
  • Installation Environment: Factor in the switch’s dimensions, operating temperature, and humidity based on the installation environment. Ensure adequate rack space and consider switches that can operate in extreme conditions if needed.
  • Advanced Features: Look for advanced features like built-in troubleshooting tools, converged wired or wireless capabilities, and other specific functionalities to meet your network requirements.

Other Considerations

PoE (Power over Ethernet) switches simplify wiring for devices like security cameras and IP phones. Stackable switches offer scalability for future expansion, enhancing network availability. By considering these factors, you can make a well-informed decision when selecting enterprise switches for your network infrastructure.

How to Choose Your Enterprise Switch Supplier

Creating a functional network is often more complex than anticipated. With numerous suppliers offering similar specifications for switches, how do you make the right choice? Here are some tips for selecting a different switch supplier:

  • Once you have an idea of your ideal switch ports and speeds, opt for a supplier with a diverse range of switch types and models. This makes it easier to purchase the right enterprise switches in one go and avoids compatibility and interoperability issues.
  • Understanding hardware support services, costs, and the software offered by switch suppliers can save you from unnecessary complications. Warranty is a crucial factor when choosing a switch brand. Online and offline technical assistance and troubleshooting support are also important considerations.

If you’ve reviewed the above criteria but are still unsure about the feasibility of your plan, seek help from network technicians. Most switch suppliers offer technical support and can recommend products based on your specific needs.

Conclusion

In summary, enterprise switches are essential components of contemporary network infrastructures, meeting the varied requirements of various network environments. When choosing, it’s essential to factor in elements like network planning, port speeds, installation environment, advanced features, and supplier support services. By carefully assessing these criteria and seeking guidance as necessary, you can ensure optimal performance and reliability for the network infrastructure.

How FS Can Help

FS offers a variety of models of enterprise switches and provides high-performance, highly reliable, and premium service network solutions, helping your enterprise network achieve efficient operations. Furthermore, FS not only offers a 5-year warranty for most switches but also provides free software upgrades. Additionally, our 24/7 customer service and free technical support are available in all time zones.

Exploring FS Enterprise Switches: A Comprehensive Insight

As a business owner, selecting the right switch for your enterprise network can be an ongoing challenge. You not only need to deal with dozens of suppliers offering various switch options but also consider the actual setup environment. In such situations, you may encounter a variety of questions, such as compatibility with existing equipment, required functionalities, and more.

FS enterprise switches perform exceptionally well in multiple scenarios, meeting the fundamental needs of modern enterprises by optimising networking, enhancing network reliability, and simplifying operations. In this article, we will introduce three series of enterprise switches from FS to help you make better choices.

FS S3910 Series Enterprise Switches

Considering users’ needs for security, availability, and ease of operation, the FS S3910 series gigabit Ethernet switches are equipped with a variety of features at both the software and hardware levels.

Software

The S3910 series enterprise switches support various security policies and protocols. Administrators can utilise the S3910 switch’s anti-DDoS attack, illegal ARP packet inspection, and various hardware ACL policies for protection, creating a clean network environment for end users. Additionally, it supports various IPv4 and IPv6 protocols, allowing users to build flexible networks according to their requirements. Lastly, it supports multiple standard management methods such as SNMP, CLI, RMON, SSH, Syslog, NTP/SNTP, FTP, TFTP, and Web GUI, catering to different user preferences.

Hardware

The key components of the S3910 series enterprise switches are reinforced with conformal coating, enhancing device protection and reliability in harsh environments. Additionally, the switch ports can withstand 8 kV lightning strikes. Furthermore, hot-swappable power supplies and redundant power can minimise downtime. Four fixed SFP or SFP+ ports can be used for physical stacking, providing greater flexibility in network topology design.

An important feature of the FS S3910 series gigabit switches is their green energy-saving capability. They incorporate a port auto-power-off function. If a port remains idle for a while, the system automatically switches the port to energy-saving mode. When there is data transmission or reception, the port is awakened by periodically sending monitoring frames, resuming service.

Application

The S3910 series gigabit enterprise switches can fully meet the requirements of various medium- to large-scale network aggregation layers and can serve as core switches in some small-scale networks. Common application areas include:

  • Gigabit access for LAN networks in large-scale park networks such as government buildings, universities, large enterprises, and manufacturing industries.
  • Gigabit access for commercial networks in sectors such as healthcare, libraries, conference centres, and exhibition halls.

FS S5800 Series Enterprise Switches

The FS S5800 series switches are layer 3 switches designed in a compact 1U form factor, suitable for most rack-mount scenarios requiring high density. They come with 1+1 hot-swappable DC power supplies and redundant fans, support MLAG, and offer higher reliability with the advantage of individual device upgrades.

There are seven types in the FS S5800 series, each with different port configurations, but all featuring multifunctional design, flexible operations, and enhanced security for validated performance, addressing common challenges in network solutions. Here are the notable advantages of the FS S5800 series switches:

  • Achieve higher capacity with up to 600 Gbps switching capacity at a lower cost, with optimal traffic control for microsecond-level latency.
  • Support ARP checks and IP Source Guard features to protect business networks from attacks.
  • Real-time configuration, monitoring, and troubleshooting of devices without CLI expertise. Visual interface for clear system status.
  • Build high-speed and future-ready networks for applications requiring higher bandwidth, such as 4K videos, HD video conferences, low-latency gaming, etc.

Different layers in the three-tiered model may have varying requirements for switches. Whether current or future demands, the FS S5800 series switches offer multiple options. For more FAQs about the FS S5800 series switches, you can visit the FS community.

FS S3900 Series Enterprise Switches

The FS S3900 series switches are gigabit Ethernet L2/L3 Lite managed switches, typically featuring 24 or 48 1G downlink ports and 4 10G uplink ports for stacking. The S3900 series switches also support various features such as advanced QoS, 1+1 redundant power supplies, and fans, making them an ideal choice for small and medium-sized enterprises, campuses, and branch networks. Here are the key features of the FS S3900 series switches:

Support Stacking

Simplified network management. The 10G high-speed uplink ports provide flexibility and scalability for enterprise access deployments.

Minimised Power Consumption

The S3900-24T4S switch adopts a fanless design for low-noise operation, addressing the issue of high noise levels in small switch deployments in office environments, thus enhancing overall system reliability.

Efficient Traffic Management

The QoS of the S3900 series switches enables better traffic control, reducing network latency and congestion, and providing improved service capabilities for designated network communications.

Enhanced Security

Leveraging the Secure Shell (SSH) protocol of the S3900 series switches, remote servers can be easily controlled and modified via the Internet. Furthermore, SSH uses key login functionality to encrypt and authenticate network data, limiting unauthorized access and effectively ensuring the normal operation of user network services.

Conclusion

Overall, FS provides three series of enterprise switches – S3900, S3910, and S5800 – designed to meet various network scales and requirements, delivering flexible, efficient, and secure network solutions.

While the S3900 series is a stackable switch supporting high-performance Ethernet stacking technology for easier network expansion and management, the S3910 series goes a step further as a high-performance enterprise-level switch with higher stacking bandwidth and more stack members, making it ideal for demanding network environments. On the other hand, the S5800 series stands out as a high-performance switch specifically designed for data centres and large enterprise networks, featuring high-density 10G and 40G port configurations, making it perfect for high-bandwidth scenarios.

If you’re still hesitating about choosing FS switches, why not take a look at what FS users have to say about our switches?

How FS Can Help

As a global cross-industry network solutions provider in the ICT sector, FS offers products and customised solutions to global data centres, telecommunications, and various enterprises. Register on the FS website now to enjoy comprehensive services immediately.

Accelerating Data Centers: FS Unveils Next-Gen 400G Solutions

As large-scale data centers transition to faster and more scalable infrastructures and with the rapid adoption of hyperscale cloud infrastructures and services, existing 100G networks fall short in meeting current demands. As the next-generation mainstream port technology, 400G significantly increases network bandwidth, enhances link utilization, and assists operators, OTT providers, and other clients in effectively managing unprecedented data traffic growth.

To meet the demand for higher data rates, FS has been actively developing a series of 400G products, including 400G switches, optical modules, cables, and network adapters.

FS 400G Switches

The emergence of 400G data center switches has facilitated the transition from 100G to 400G in data centers, providing flexibility for building large-scale leaf and spine designs while reducing the total number of network devices. This reduction can save costs and decrease power consumption. Whether it’s the powerful N9510-64D or the versatile N9550 series, FS 400G data center switches can deliver the performance and flexibility required for today’s data-intensive applications.

Of particular note is that, as open network switches, the N8550 and N9550 series switches can enhance flexibility by freely choosing preferred operating systems. They are designed to meet customer requirements by providing comprehensive support for L3 features, SONiC and Broadcom chips, and data center functionalities. Additionally, FS offers PicOS-based open network switch operating system solutions, which provide a more flexible, programmable, and scalable network operating system (NOS) at a lower total cost of ownership (TCO).

FS 400G Transceivers

FS offers two different types of packaging for its 400G transceivers: QSFP-DD and OSFP, developed to support 400G with performance as their hallmark. Additionally, FS provides CFP2 DCO transceivers for coherent transmission at various rates (100G/200G/400G) in DWDM applications. Moreover, FS has developed InfiniBand cables and transceivers to enhance the performance of HPC networks, meeting the requirements for high bandwidth, low latency, and highly reliable connections.

FS conducts rigorous testing on its 400G optical modules using advanced analytical equipment, including TX/RX testing, temperature measurement, rate testing, and spectrometer evaluation tests, to ensure the performance and compatibility of the optical modules.

FS 400G Cables

When planning 400G Ethernet cabling or connection schemes, it’s essential to choose devices with low insertion loss and good return loss to meet the performance requirements of high-density data center links. FS offers various wiring options, including DAC/AOC cables and breakout cables. FS DAC/AOC breakout cables provide three connection types to meet high-density requirements for standard and combination connector configurations: 4x100G, 2x200G, and 8x50G. Their low insertion loss and ultra-low crosstalk effectively enhance transmission performance, while their high bend flexibility offers cost-effective solutions for short links.

FS 400G Network Adapters

FS 400G network adapters utilize the industry-leading ConnectX-7 series cards. The ConnectX-7 VPI card offers a 400Gb/s port for InfiniBand, ultra-low latency, and delivers between 330 to 3.7 billion messages per second, enabling top performance and flexibility to meet the growing demands of data center applications. In addition to all existing innovative features from previous versions, the ConnectX-7 card also provides numerous enhanced functionalities to further boost performance and scalability.

FS 400G Networking Soluitons

To maximize the utilization of the 400G product series, FS offers comprehensive 400G network solutions, such as solutions tailored for upgrading from 100G to high-density 400G data centers. These solutions provide diverse and adaptable networking options customized for cloud data centers. They are designed to tackle the continuous increase in data center traffic and the growing need for high-bandwidth solutions in extensive 400G data center networks.

For more information about FS 400G products, please read FS 400G Product Family Introduction.

How FS Can Help

Register for an FS account now, choose from our range of 400G products and solutions tailored to your needs, and effortlessly upgrade your network.

Exploring FS 100G EDR InfiniBand Solutions: Powering HPC

In the realm of high-speed processing and complex workloads, InfiniBand is pivotal for HPC and hyperscale clouds. This article explores FS’s 100G EDR InfiniBand solution, emphasizing the deployment of QSFP28 EDR transceivers and cables to boost network performance.

What are the InfiniBand HDR 100G Cables and Transceivers

InfiniBand EDR 100G Active AOC Cables

The NVIDIA InfiniBand MFA1A00-E001, an active optical cable based on Class 1 FDA Laser, is designed for InfiniBand 100Gb/s EDR systems. With lengths ranging from 1m to 100m, these cables offer predictable latency, consuming a max of 3.5W, and enhancing airflow in high-speed HPC environments.

InfiniBand EDR 100G Passive Copper Cables

The NVIDIA InfiniBand MCP1600-E001E30 is available in lengths of 0.5m to 3m. With four high-speed copper pairs supporting up to 25Gb/s, it offers efficient short-haul connectivity. Featuring EEPROM on each QSFP28 port, it enhances host system communication, enabling higher port bandwidth, density, and configurability while reducing power demand in data centers.

InfiniBand EDR 100G Optical Modules

The 100Gb EDR optical modules, packaged in QSFP28 form factor with LC duplex or MTP/MPO-12 connectors, are suitable for both EDR InfiniBand and 100G Ethernet. They can be categorized into QSFP28 SR4, QSEP28 PSM4, QSFP28 CWDM4, and QSFP28 LR4 based on transmission distance requirements.

100Gb InfiniBand EDR System Scenario Applications

InfiniBand has gained widespread adoption in data centers and other domains, primarily employing the spine-leaf architecture. In data centers, transceivers and cables play a pivotal role in two key scenarios: Data Center to User and Data Center Interconnects.

For more on application scenarios, please read 100G InfiniBand EDR Solution.

Conclusion

Amidst the evolving landscape of 100G InfiniBand EDR, FS’s solution emerges as mature and robust. Offering high bandwidth, low latency, and reduced power consumption, it enables higher port density and configurability at a lower cost. Tailored for large-scale data centers, HPC, and future network expansion, customers can choose products based on application needs, transmission distance, and deployment. FS 100G EDR InfiniBand solution meets the escalating demands of modern computational workloads.

Navigating Optimal GPU-Module Ratios: Decoding the Future of Network Architecture

The market’s diverse methods for calculating the optical module-to-GPU ratio lead to discrepancies due to varying network structures. The precise number of optical modules required hinges on critical factors such as network card models, switch models, and the scalable unit count.

Network Card Model

The primary models are ConnectX-6 (200Gb/s, for A100) and ConnectX-7 (400Gb/s, for H100), with the upcoming ConnectX-8 800Gb/s slated for release in 2024.

Switch Model

MQM 9700 switches (64 channels of 400Gb/s) and MQM8700 switches (40 channels of 200Gb/s) are the main types, affecting optical module needs based on transmission rates.

Number of Units (Scalable Unit)

Smaller quantities use a two-tier structure, while larger quantities employ a three-tier structure, as seen in H100 and A100 SuperPODs.

  • H100 SuperPOD: Each unit consists of 32 nodes (DGX H100servers) and supports a maximum of 4 units to form a cluster, using a two-layer switching architecture.
  • A100 SuperPOD: Each unit consists of 20 nodes (DGX A100 servers) and supports a maximum of 7 units to form a cluster. If the number of units exceeds 5, a three-layer switching architecture is required.

Optical Module Demand Under Four Network Configurations

Projected shipments of H100 and A100 GPUs in 2023 and 2024 indicate substantial optical module demands, with a significant market expansion forecasted. The following are four application scenarios:

  • A100+ConnectX6+MQM8700 Three-layer Network: Ratio 1:6, all using 200G optical modules.
  • A100+ConnectX6+MQM9700 Two-layer Network: 1:0.75 of 800G optical modules + 1:1 of 200G optical modules.
  • H100+ConnectX7+MQM9700 Two-layer Network: 1:1.5 of 800G optical modules + 1:1 of 400G optical modules.
  • H100+ConnectX8 (yet to be released)+MQM9700 Three-layer Network: Ratio 1:6, all using 800G optical modules.

For detailed calculations regarding each scenario, you can click on this article to learn more.

Conclusion

As technology progresses, the networking industry anticipates the rise of high-speed solutions like 400G multimode optical modules. FS offers optical modules from 1G to 800G, catering to evolving network demands.

Register for an FS account, select products that suit your needs, and FS will tailor an exclusive solution for you to achieve network upgrades.

Revolutionizing Data Center Networking: From Traditional to Advanced Architectures

As businesses upgrade their data centers, they’re transitioning from traditional 2-layer network architectures to more advanced 3-layer routing frameworks. Protocols like OSPF and BGP are increasingly used to manage connectivity and maintain network reliability. However, certain applications, especially those related to virtualization, HPC, and storage, still rely on 2-layer network connectivity due to their specific requirements.

VXLAN Overlay Network Virtualization

In today’s fast-paced digital environment, applications are evolving to transcend physical hardware and networking constraints. An ideal networking solution offers scalability, seamless migration, and robust reliability within a 2-layer framework. VXLAN tunneling technology has emerged as a key enabler, constructing a virtual 2-layer network on top of the existing 3-layer infrastructure. Control plane protocols like EVPN synchronize network states and tables, fulfilling contemporary business networking requirements.

Network virtualization divides a single physical network into distinct virtual networks, optimizing resource use across data center infrastructure. VXLAN, utilizing standard overlay tunneling encapsulation, extends the control plane using the BGP protocol for better compatibility and flexibility. VXLAN provides a larger namespace for network isolation across the 3-layer network, supporting up to 16 million networks. EVPN disseminates layer 2 MAC and layer 3 IP information, enabling communication between VNIs and supporting both centralized and distributed deployment models.

For enhanced flexibility, this project utilizes a distributed gateway setup, supporting agile execution and deployment processes. Equal-Cost Multipath (ECMP) routing and other methodologies optimize resource utilization and offer protection from single node failures.

RoCE over EVPN-VXLAN

RoCE technology facilitates efficient data transfer between servers, reducing CPU overhead and network latency. Integrating RoCE with EVPN-VXLAN enables high-throughput, low-latency network transmission in high-performance data center environments, enhancing scalability. Network virtualization divides physical resources into virtual networks tailored to distinct business needs, allowing for agile resource management and rapid service deployment.

Simplified network planning, deployment, and operations are essential for managing large-scale networks efficiently. Unnumbered BGP eliminates the need for complex IP address schemes, improving efficiency and reducing operational risks. Real-time fault detection tools like WJH provide deep network insights, enabling quick resolution of network challenges.

Conclusion

Essentially, recent advancements in data center networking focus on simplifying network design, deployment, and management. Deploying technological solutions such as Unnumbered BGP eliminates the need for complex IP address schemes, reducing setup errors and boosting productivity. Tools like WJH enable immediate fault detection, providing valuable network insights and enabling quick resolution of network issues. The evolution of data center infrastructures is moving towards distributed and interconnected multi-data center configurations, requiring faster network connections and improving overall service quality for users.

For detailed information on EVPN-VXLAN and RoCE, you can read: Optimizing Data Center Networks: Harnessing the Power of EVPN-VXLAN, RoCE, and Advanced Routing Strategies.