Unveiling the Secrets of Server Hardware Composition

In the digital age, servers are the core foundation supporting the internet and various technological applications. Whether browsing the web, sending emails, or watching online videos, a vast and complex server system operates behind the scenes. Despite enjoying digital conveniences, few people have an in-depth understanding of server hardware. This article will take you into the mysterious world of servers, exploring how they are composed of various hardware components.

Server Basics: Understanding the Core Components and Concepts

A server, a term we frequently encounter in daily life, is essentially the central nervous system of the internet. It operates tirelessly, ensuring our digital activities run smoothly. A server is a high-performance computer with a fast CPU, reliable long-term operation, and powerful external data throughput. Compared to ordinary computers, servers have significant advantages in processing power, stability, reliability, security, scalability, and manageability. They are the unsung heroes supporting our digital lives, not just the core of data processing.The hardware makeup of a server involves several critical components, including the central processing unit (CPU), memory (RAM), storage devices (hard drives and solid-state drives), motherboard, power supply unit, and network interface cards. These components work together to provide robust computing and storage capabilities.

Central Processing Unit (CPU)

The CPU is the brain of the server, responsible for executing computational tasks and processing data. The primary difference between server processors and ordinary desktop processors lies in their design focus; server processors emphasise multi-core performance and high parallel processing capabilities. The CPU’s performance directly impacts the server’s overall computational power and response speed. Common CPU brands in servers include Intel and AMD (Advanced Micro Devices). Multi-core processors are widely used in servers as they can handle multiple tasks simultaneously, enhancing concurrency and efficiency.

  • Core Count: Server CPUs typically have multiple cores, ranging from 4 to 64 or more.
  • Hyper-Threading Technology: Technologies like Intel’s Hyper-Threading allow a single core to handle two threads simultaneously, further improving efficiency.

Random-Access Memory (RAM)

Random-Access Memory is where a server temporarily stores data and programs. When applications running on the server need to read or write data, it is temporarily loaded into Random-Access Memory for faster access and processing. The size and speed of memory are crucial to the server’s performance. High-capacity and high-speed Random-Access Memory helps avoid memory bottlenecks and improves the server’s operational efficiency.

  • Type: Servers typically use ECC (Error-Correcting Code) memory, which can detect and correct common types of data corruption, ensuring data accuracy and system stability.
  • Capacity: Server memory capacity usually ranges from tens of gigabytes to several terabytes, depending on the server’s purpose and workload requirements.

Storage Devices

Servers are usually equipped with various storage devices, including hard disk drives (HDD) and solid-state drives (SSD). HDDs are traditional storage devices that offer large storage capacities at lower prices. SSDs, on the other hand, are favoured for their high-speed read/write capabilities and lower access times, particularly in scenarios requiring rapid data retrieval. Server administrators typically select the appropriate storage configuration based on needs and budget. The choice of storage devices directly impacts data access speed and capacity.

  • Hard Disk Drives (HDD): Provide large storage space at a lower cost, suitable for storing large volumes of data.
  • Solid-State Drives (SSD): Offer fast speeds, short response times, and high durability, ideal for caching and frequently accessed data.
  • NVMe SSDs: Use high-speed PCIe channels and are faster than regular SSDs, suitable for extremely high-speed data processing needs.

Motherboard

The motherboard is the core of the server hardware, connecting all hardware components and facilitating communication and data transfer. It contains CPU sockets, memory slots, expansion slots, and various input/output (I/O) interfaces. The quality and design of the motherboard are crucial to the server’s stability and reliability.

  • Chipset: The chipset on the motherboard determines the types of CPUs and memory it supports, their maximum capacity, and the types and numbers of expansion slots available.
  • Expansion Slots: PCIe expansion slots are used to install additional network cards, storage controllers, or specialised processors like GPUs.

Power Supply Unit (PSU)

The power supply unit provides the necessary power for the server. Given that servers typically need to run continuously, the stability and efficiency of the PSU are critical for maintaining server reliability and reducing energy consumption.

  • Power: The power rating of the PSU needs to match the total power requirements of all installed hardware, usually with some extra capacity for safety.
  • Redundancy: High-end servers often feature redundant power supplies, allowing the system to continue running even if one PSU fails.

Network Interface Card (NIC)

The server communicates with other devices and networks through the network interface card. These NICs can be Ethernet cards, fibre channel cards, or other types, depending on the server’s connectivity needs and network architecture.

  • Speed: Modern server NIC speeds range from 1Gbps to 100Gbps, with 200G and 400G NICs now emerging.
  • Port Quantity: Multiple network ports can provide network load balancing or redundant connections, enhancing reliability.

The Evolution of Server Hardware: From Basics to Innovations

Server hardware has undergone significant evolution and innovation over the years. With continuous technological advancements, server hardware has become more powerful, efficient, and reliable. Here are the main trends in the evolution of server hardware:

Multi-Core Processors

As computer science has progressed, CPUs have evolved from single-core to multi-core. Multi-core processors allow multiple threads and tasks to be executed simultaneously, significantly enhancing the server’s concurrency performance. Multi-core server processors have become standard in modern servers.

Virtualisation Technology

Virtualisation technology enables a single physical server to run multiple virtual servers simultaneously, thereby utilising server resources more efficiently. This technology helps reduce hardware costs, save energy, and simplify server management and maintenance.

Proliferation of Solid-State Drives (SSDs)

With the decreasing cost and increasing capacity of SSDs, their use in servers has become widespread. Compared to traditional mechanical hard drives, SSDs offer faster read and write speeds and lower power consumption, significantly boosting server performance and energy efficiency.

High-Performance Computing (HPC) and GPU Acceleration

The advent of high-performance computing and graphics processing units (GPUs) allows servers to process complex scientific calculations and graphic rendering tasks more rapidly. This plays a crucial role in scientific research, artificial intelligence, and deep learning.

The Future of Server Technology: What’s Next?

Exploring the hardware composition of servers reveals the extensive and coordinated efforts of a dedicated tech team. From processors to storage devices, from memory to network interfaces, each hardware component plays a crucial role in delivering efficient, stable, and secure internet services. In this digital age, server hardware is constantly evolving to meet the growing demands of the internet and technology.

The use of multi-core processors, high-capacity memory, high-speed SSDs, and GPU acceleration equips servers with enhanced computing and storage capabilities, enabling them to handle more complex tasks and vast amounts of data.

With the widespread adoption of virtualisation technology, a single server can run multiple virtual servers, improving resource utilisation and flexibility. Virtualisation also simplifies server management. Through virtual machine management software, administrators can easily create, deploy, and migrate virtual servers, achieving dynamic resource allocation and load balancing.

Additionally, server energy efficiency is becoming increasingly important. Server power consumption significantly impacts data centre and enterprise operating costs. To reduce energy consumption, some servers incorporate energy-saving designs such as intelligent power management, thermal management technologies, and low-power components.

Besides common server hardware components, some specialised servers may feature customised hardware. For instance, database servers might be equipped with dedicated high-speed storage devices for handling extensive database operations, while video encoding servers might be fitted with high-performance GPUs to accelerate video encoding and decoding.

In the future, with continuous technological advancements, server hardware will continue to evolve and innovate. With the ongoing development of cloud computing, the Internet of Things (IoT), and artificial intelligence, servers will require higher performance, larger storage capacities, and greater energy efficiency. Consequently, hardware manufacturers and tech companies will continue to invest heavily in developing new server hardware technologies to meet the growing demands.

Conclusion

In summary, the hardware composition of servers is a complex and diverse field that spans various disciplines within computer science, engineering, and electronics. Understanding server hardware is crucial for comprehending the technological infrastructure and internet services of the digital age. Through ongoing research and innovation, we can expect future servers to continue playing a vital role in driving technological progress and societal development.

How FS Can Help

As a provider of network solutions, FS offers a wide range of servers and can also customise servers to meet specific user needs. Our expert team can design tailored solutions for building cost-effective and high-quality data centres. Visit the FS website now to learn more about our products and solutions, and our professional technicians are always available to answer any questions you may have.

Data Centre Connectivity: The Surge of Coherent Optical Transceiver Technology

According to the optical transceiver report from the Yole Group, the revenue generated by optical transceivers in 2022 was approximately $11 billion. Forecasts indicate substantial growth in this field, with projections reaching $22.2 billion by 2028.

As data centres witness increased investments and rapid growth in traffic, the optical module market undergoes a transformative phase. The mainstream adoption of silicon photonics technology in optical transceivers is a key trend fueling this evolution, as data centre operators aim to maximise their infrastructure capabilities.

Click to learn more about the trends in the data centre optical module market: New Trends of Optical Transceiver Market in Data Centers | FS Community

Advancements in Coherent Optical Module Technology and Standardization Trends

Coherent technology has emerged as the leading solution for Data Center Interconnect (DCI) applications, spanning distances of 80 to 120 km in data communication. The evolution of applications has brought forth new demands for coherent optical transceiver systems. This shift has led to the development of coherent transceiver units, transitioning from initial integration with line cards and Multi-Source Agreements (MSA) transceivers to independent, standardized pluggable optical transceivers.

The latest advancements in Complementary Metal-Oxide-Semiconductor (CMOS) technology digital signal processor (DSP) chips and integrated photonics technology have paved the way for developing smaller, lower power-consuming pluggable coherent optical transceivers. The trajectory of coherent optical modules applied in metropolitan and backbone networks is characterized by high speed, miniaturization, low power consumption, and standardization of interoperability.

Presently, commercial coherent technology has progressed to support single-wavelength 800G transmission. Nonetheless, the industry lacks standardized specifications for 800G. In contrast, 400G coherent technology has reached maturity, adhering to standards like 400ZROpenROADM, and OpenZR+. The Optical Internetworking Forum (OIF) is currently deliberating on the next-generation coherent technology standard, tentatively named 800ZR.

Coherent Modulation vs. PAM4 in 800G Optical Transmission

Coherent modulation used in coherent optical communication involves altering the frequency, phase, and amplitude of the optical carrier to transmit signals. Unlike intensity detection, coherent modulation requires coherent light with clear frequency and phase, primarily used for high-speed and long-distance transmission. PAM4 is suitable for high-speed, medium-short distance transmission, making it ideal for internal connections in next-generation data centres.

For example, FS OSFP 800G SR8 optical transceivers employ PAM4 modulation, suitable for use in InfiniBand NDR end-to-end systems, designed for Quantum-2 air-cooled switches. They are the ideal solution for the supercomputing and artificial intelligence industries, seamlessly integrating into compute and storage infrastructures, ensuring efficient high-performance connectivity.

In the context of long-distance Data Center Interconnect (DCI) scenarios, PAM4 faces competition from coherent modulation based on the 400ZR protocol. As data centre speeds enter the era of 800G, the differences between PAM4 and coherent technology are gradually diminishing. The competitiveness of each technology depends on factors such as cost and power consumption.

Choosing Between InP and Silicon Photonics

In the context of coherent technology, the choice between InP (Indium Phosphide) and silicon photonics for I/Q modulators and receivers becomes crucial. Despite being cost-effective, silicon photonics exhibits lower performance, known for its high peak voltage and limited bandwidth. In contrast, InP offers lower peak voltage and superior bandwidth but at a higher cost. In PAM4 and coherent technologies, InP transceivers are often more expensive, while silicon photonics provides a more economical alternative.

Coherent vs. PAM4 in High-Speed Transmission

Regarding power consumption, with the evolution of chip technology from 7nm to 5nm and even 3nm, enhancement is not limited to an increase in DSP processing rates. It also extends to superior power reduction performance.

Conclusion

Several companies have validated these methods through experiments. FS believes that with increased production and reduced costs, coherent methods can achieve cost competitiveness with PAM4 by requiring only a laser, modulator, and receiver. This remains true even as optical equipment becomes more complex. Consistency in solutions enables higher flexibility and performance, distinguishing them. In conclusion, the competition between coherent transmission technology and PAM4 transmission technology continues, with future developments determining the mainstream approach.

As a leading solutions provider in the industry, FS has an abundant stock of 800G modules, ensuring your needs are met from quality to rapid delivery. Visit the FS website now for more product and solution information.

Read more about the detailed content on coherent modules: Advancements in Coherent Optical Module Technology and Standardization Trends | FS Community

Coherent Modulation vs. PAM4 in 800G Optical Transmission | FS Community

Unlocking the Potential of 800G Transceivers: Types and Applications

With the ever-increasing need for swift data transmission, the 800G transceiver has garnered considerable interest for its attributes such as high bandwidth, rapid transmission rates, outstanding performance, compact design, and future-proof compatibility. In this article, we aim to provide an overview of the diverse range of 800G optical modules and delve into their applications to assist you in making an informed decision when selecting 800G transceivers.

Exploring the Range of 800G Transceivers

Based on the single-channel rate, 800G transceivers can be categorised into 100G and 200G variants. The diagram below illustrates the corresponding architectures. Single-channel 100G optical modules can be deployed more readily, whereas 200G optical modules demand more sophisticated optical devices and necessitate a gearbox for conversion. This section primarily focuses on single-channel 100G modules.

Single-Mode 800G Transceivers:

The 800G single-mode optical transceiver is suitable for long-distance optical fibre transmission and can cover a wider network range.

800G DR8, 800G PSM8 & 800G 2xDR4:

These three standards share similar internal architectures, featuring 8 Tx and 8 Rx, with a single-channel rate of 100 Gbps, and requiring 16 optical fibers.

The 800G DR8 optical module utilises 100G PAM4 and 8-channel single-mode parallel technology, enabling transmission distances of up to 500m through single-mode optical fibre. Primarily deployed in data centres, it serves 800G-800G, 800G-400G, and 800G-100G interconnections.

The 800G PSM8 makes use of CWDM technology with 8 optical channels, each capable of delivering 100Gbps. It supports a transmission distance of 100m, making it well-suited for long-distance transmission and efficient fibre resource sharing.

On the other hand, the 800G 2DR4 configuration denotes 2x “400G-DR4” interfaces. It features 2x MPO-12 connectors, allowing for the creation of 2 physically distinct 400G-DR4 links from each 800G transceiver without the need for optical breakout cables. As illustrated in the figure below, it can be connected to 400G DR4 transceivers and supports a transmission distance of 500m, facilitating smooth data centre upgrades.

800G 2FR4/2LR4/FR4/FR8:

FR and LR stand for Fixed Reach and Long Reach.

800G 2xFR4 and 800G 2xLR4 share similar internal structures. They operate with 4 wavelengths at a single-channel rate of 100 Gbps. Using Mux, they reduce the required optical fibres to 4, as depicted in the figure below. 800G 2xFR4 can transmit up to 2km, while 800G 2xLR4 supports distances of up to 10km. Both standards use dual CS or dual duplex LC interfaces for optical connectivity. They are suitable for various applications including 800G Ethernet, breakout 2x 400G FR4/LR4, data centres, and cloud networks.

800G FR4 follows a scheme that utilises four wavelengths and PAM4 technology, operating at a single-channel rate of 200 Gbps and requiring two optical fibres, as shown in the figure below. It supports a transmission distance of 2km and is generally used in data centre interconnection, high-performance computing, storage networks, etc.

Lastly, the 800G FR8 utilises eight wavelengths, with each operating at 100 Gbps, as illustrated in the figure below. It necessitates two optical fibres and can transmit up to 2km. Additionally, the 800G FR8 offers increased transmission capacity. Typical applications include wide-area networking, data centre interconnection, and more.

Multimode 800G Transceivers

In multimode applications with transmission distances under 100 meters, there are primarily two standards for 800G optical transceivers.

800G SR8

The 800G SR8 optical transceiver utilises VCSEL technology, offering advantages such as low power consumption, cost-effectiveness, and high reliability. With a wavelength of 850nm and a single-channel speed of 100Gbps PAM4, it requires 16 optical fibres, representing an enhanced version of the 400G SR4 with double the channels. Capable of achieving high-speed 800G data interconnection within 100m, it enhances data transmission efficiency in data centres. It employs either an MPO16 or Dual MPO-12 optical interface, as shown in the diagram. Typically used in various scenarios such as data centres, communication networks, and supercomputing, the 800G SR8 optical module is versatile and efficient.

800G SR4.2

800G SR4.2 optical transceiver employs two wavelengths, 850nm and 910nm, enabling bidirectional transmission over a single fibre, commonly known as bi-directional transmission. The module incorporates a DeMux component to separate the two wavelengths. With a single-channel rate of 100 Gbps PAM4, it requires 8 optical fibres, half the amount needed for SR8. The 800G SR4.2 makes use of a 4+4 fibre setup within an MPO-12 connector interface, offering a seamless transition from 400G to 800G without the need for alterations to the fibre infrastructure.

Unleashing Potential: Applications of 800G Transceiver

In the realm of high-performance networking, the evolution of 800G transceivers has ushered in a new era of possibilities. The high-speed, efficient, and reliable data transmission capabilities of 800G transceivers have led to their widespread adoption across multiple scenarios.

Data Center Connectivity

Data Center Interconnectivity is one of the primary domains where the prowess of 800G optical modules shines. With InfiniBand, these modules facilitate seamless communication between data centers, powering the backbone of modern interconnected infrastructures. The substantial increase in data processing capability and data transmission efficiency in data centres has been essential to meet the evolving demands of cloud computing and big data processing.

High-Performance Computing

In the arena of High-Performance Computing, where processing demands are ceaselessly escalating, the efficiency of 800G transceives becomes a game-changer. The modules ensure rapid data transfer, reducing latency, and optimizing overall system performance.

5G and Communication Networks

The surge of 5G and Communication Networks demands not only speed but also reliability. Enter the 800G QSFP and QSFP-dd transceivers, engineered to meet the demands of next-gen communication networks. Their advanced capabilities bolster the 5G architecture, ensuring a robust and responsive network infrastructure. The development has also fostered advancements in various fields such as the Internet of Things (IoT), Industrial Internet, and autonomous driving.

In the Metropolitan Area Network (Man) Domain

The metropolitan area network (MAN) serves as a bridge between local area networks (LANs) and wide area networks (WANs) across different locations, enabling high-speed data transmission between these locations through fibre optic networks. The high transmission rate of 800G optical modules can provide higher bandwidth and more stable connections, reducing data transmission delays between MANs. This improves data transfer rates and network responsiveness, fostering urban informatization and economic development.

Conclusion

800G optical transceivers, integral to the forthcoming high-speed optical communication era, come in diverse types catering to various application requirements. A comprehensive grasp of these types and their respective application domains, along with addressing common queries about 800G transceivers, will facilitate the advancement of data transmission technology. The mastery of this cutting-edge technology enables us to adeptly navigate the challenges and prospects presented by the digital era.

How FS can Help

FS offers a range of 800G transceivers to meet Ethernet and InfiniBand network connectivity needs. Additionally, FS’s overseas warehouses enable swift deliveries. Visit the FS website now for more product and solution information, and benefit from comprehensive service support.

Exploring FS 800G Transceivers: Your FAQs Answered

With the rapid development of technologies such as cloud computing, the Internet of Things (IoT) and big data, there’s a growing need for network bandwidth and faster transmission speeds. The introduction of the 800G module addresses this demand for high-speed data transmission. FS 800G transceivers incorporate advanced modulation and demodulation techniques alongside high-density optoelectronic devices, enabling them to achieve higher transmission rates in a compact form factor. Here are some FAQs about FS 800G optical transceivers.

What form-factors are used for 800G transceivers?

800G transceivers share the same form factors as 400G optics, namely OSFP and QSFP-DD. FS supports both form factors.

OSFP:

The OSFP, or “Octal Small Form-factor Pluggable,” derives its name from its 8 electrical lanes, each modulated at 100Gb/s for a total bandwidth of 800Gb/s in 800G configurations.

QSFP-DD:

The QSFP-DD, or “Quad Small Form-factor Pluggable – Double Density,” retains the QSFP form factor but adds an extra row of electrical contacts for more high-speed electrical lanes. With 8 lanes operating at 100Gb/s each, the QSFP-DD delivers a total bandwidth of 800Gb/s.

QSFP-DD and OSFP are distinct optical module packaging types. QSFP-DD, being smaller, is ideal for high-density port configurations. And OSFP consumes slightly more power compared to QSFP-DD. Additionally, QSFP-DD is fully compatible with QSFP56, QSFP28, and QSFP+, whereas OSFP is not.

For more details on the differences between 800G OSFP and QSFP-DD packaging, please refer to:800G Transceiver Overview: QSFP-DD and OSFP Packages

Can OSFPs be plugged into a QSFP-DD port, or QSFP-DD’s plugged into an OSFP port?

No. The OSFP and the QSFP-DD are two physically distinct form factors. OSFP systems require the use of OSFP optics and cables, while QSFP-DD systems necessitate QSFP-DD optics and cables.

How many electrical lanes are used by 800G transceivers?

The 800G transceivers utilise 8x electrical lanes in each direction, with 8 transmit lanes and 8 receive lanes.

What are the speed and modulation formats used by 800G OSFP/QSFP-DD modules?

As mentioned earlier, all 800G modules utilise 8x electrical lanes bidirectionally, with 8 transmit lanes and 8 receive lanes. Each lane operates at a data rate of 100G PAM4, yielding a total module bandwidth of 800Gb/s. Furthermore, the optical output of all 800G transceivers consists of 8 optical waves, each wave modulated at 100G PAM4 per lane.

What is the significance of PAM4 or NRZ modulation for electrical or optical channels?

NRZ, which stands for “Non Return to Zero,” refers to a modulation scheme used in electrical or optical data channels. It involves two permissible amplitude levels or symbols, with one level representing a digital ‘1’ and the other representing a digital ‘0’. NRZ is commonly employed for data transmission up to 25Gb/s and is the simplest method for transmitting digital data. An example of an NRZ waveform, along with an eye diagram illustrating NRZ data, is depicted below. An eye diagram provides a visual representation of a modulation scheme, with each symbol overlapping one another.

PAM4, on the other hand, stands for Pulse Amplitude Modulation – 4, with the ‘4’ signifying the number of distinct amplitude levels or symbols in the electrical or optical signal carrying digital data. In this case, each amplitude level or symbol represents two bits of digital data. Consequently, a PAM4 waveform can transmit twice as many bits as an NRZ waveform at the same symbol or “Baud” rate. The diagram below showcases a PAM4 waveform along with an eye diagram for PAM4 data.

For more information on the comparison between NRZ and PAM4, please refer to:NRZ vs. PAM4 Modulation Techniques

What is the maximum power consumption of 800G OSFP and QSFP-DD transceivers?

The power consumption of 800G transceivers varies between 13W and 18W per port. To obtain specific power consumption values for individual modules, please consult each transceiver’s datasheet.

Do FS 800G transceivers support backward compatibility?

The backward compatibility of 800G transceivers depends on the specific design and implementation. Some 800G transceivers are designed to be backwards compatible with 400G or 200G transceivers, allowing for a smooth transition and interoperability within existing networks. For example, the FS 800G OSFP SR8 transceiver supports 800G ethernet and breakout 2x 400G SR4 applications. However, it is important to check with the module manufacturer for specific compatibility details.

What standards govern 800G transceivers?

Standards for 800G transceivers, such as form factor specifications, electrical interfaces, and signalling protocols, are typically governed by industry consortiums like the IEEE (Institute of Electrical and Electronics Engineers), the OIF (Optical Internetworking Forum), and the QSFP-DD MSA (Quad Small Form Factor Pluggable – Double Density Multi-Source Agreement).

What 800G Transceivers are available from FS?

FS supports 800G optical transceivers in both OSFP and QSFP-DD form factors. The key features of an FS 800G optical module typically include supporting multiple modulation formats, high data transfer rates, low power consumption, advanced error correction mechanisms, compact form factors (e.g., QSFP-DD or OSFP), and interoperability with existing network infrastructure. The tables below summarise the 800G transceiver connectivity options supported.

QSFP-DD Part No.Product DescriptionOSFP Part No.Product Description
QDD-SR8-800GGeneric Compatible QSFP-DD 800GBASE-SR8 PAM4 850nm 50m DOM MPO-16/APC MMF Optical Transceiver ModuleOSFP-SR8-800GNVIDIA InfiniBand MMA4Z00-NS Compatible OSFP 800G SR8 PAM4 2 x SR4 850nm 50m DOM Dual MPO-12/APC NDR MMF Optical Transceiver Module, Finned Top
QDD-DR8-800GGeneric Compatible QSFP-DD 800GBASE-DR8 PAM4 1310nm 500m DOM MPO-16/APC SMF Optical Transceiver Module, Support 2 x 400G-DR4 and 8 x 100G-DROSFP-DR8-800GNVIDIA InfiniBand MMS4X00-NM Compatible OSFP 800G DR8 PAM4 2 x DR4 1310nm 500m DOM Dual MPO-12/APC NDR SMF Optical Transceiver Module, Finned Top
QDD800-PLR8-B1Generic Compatible QSFP-DD 800GBASE-PLR8 PAM4 1310nm 10km DOM MPO-16/APC SMF Optical Transceiver Module, Support 2 x 400G-PLR4 and 8 x 100G-LROSFP-2FR4-800GNVIDIA InfiniBand MMS4X50-NM Compatible OSFP 800G 2FR4 PAM4 1310nm 2km DOM Dual Duplex LC/UPC NDR SMF Optical Transceiver Module, Finned Top

What are the advantages of upgrading to 800G technology?

Moving to 800G technology offers several benefits for network infrastructure and data-intensive applications:

  1. Increased Bandwidth: 800G technology offers a significant increase in bandwidth, enabling faster and more efficient data transmission, meeting the growing demand for high-speed data transfer across various industries.
  2. Higher Data Rates: With 800G technology, data rates of up to 800Gbps can be achieved, enabling faster data processing, reduced latency, and improved overall network performance.
  3. Future-Proofing: Adopting 800G technology allows organizations to future-proof their network infrastructure, ensuring compatibility with upcoming technologies and applications.

Conclusion

The advent of 800G technology represents a pivotal advancement in addressing the escalating demands for network bandwidth and faster transmission speeds in our rapidly evolving digital landscape. FS 800G transceivers, with their seamless compatibility with existing network infrastructure, offer a compelling solution for organisations seeking to enhance their data transmission capabilities.

Upgrade to FS 800G optical transceivers today to experience unparalleled performance, and increased bandwidth for the challenges and opportunities of tomorrow.

Unveiling 800G Transceivers: QSFP-DD vs. OSFP Packages

While the current surge in demand is for 400G optical modules, the 800G optical network is gearing up for high-speed, high-density ports and low-latency DCI. The 800G transceiver can handle 8 billion bits per second, over twice the capacity of the previous 400G generation. This article delves into the key 800G module packages: QSFP-DD and OSFP.

What Is the Development Trend of 800G Transceiver Packaging?

The optical module is a crucial optoelectronic device facilitating photoelectric conversion in optical communication, essential to the industry. From GBIC to smaller SFP and now 800G QSFP-DD and OSFP, fibre transceiver form factors have evolved. The 800G transceiver’s progress focuses on speed, miniaturisation, and hot-swappable capability. Its applications span Ethernet, CWDM/DWDM, connectors, Fibre Channels, wired and wireless access, covering both data communication and telecom markets.

800G Transceiver Form Factors Advantages

800G QSFP-DD Form Factor:

The QSFP-DD is a dual-density, four-channel small pluggable high-speed transceiver, currently favoured for 800G optical applications, aiding data centres in flexible scalability. It employs 8-channel electrical interfaces, supporting rates up to 25Gb/s (NRZ modulation) or 50Gb/s (PAM4 modulation) per channel, offering aggregation solutions of up to 200Gb/s or 400Gb/s.

Advantages of the 800G QSFP-DD:

  1. Backward compatibility with QSFP+/QSFP28/QSFP56 packages.
  2. Utilises a 2×1 stacked integrated cage and connector, supporting single-height and double-height cage connector systems.
  3. Features SMT connectors and 1xN cages, optimising heat capacity to at least 12 watts per module, reducing heat dissipation costs.
  4. Designed with flexibility in mind by the MSA working group, adopting ASIC design, supporting various interface rates, and maintaining backward compatibility (QSFP+/QSFP28), reducing port and deployment costs.

800G OSFP Form Factor:

The OSFP represents a new generation of optical modules, smaller than CFP8 yet slightly larger than QSFP-DD. It features eight high-speed electrical channels supporting 32 OSFP ports on a 1U front panel, enhanced by an integrated heat sink for superior heat dissipation.

Advantages of the 800G OSFP:

  1. OSFP is designed with an 8-channel (Octal or 8-lane) configuration, supporting a total throughput of up to 800G, enabling greater bandwidth density.
  2. Its support for more channels and higher data transfer rates translates to enhanced performance and longer transmission distances.
  3. The OSFP module boasts excellent thermal design, capable of handling higher power consumption effectively.
  4. With a larger form factor, OSFP is poised to support higher rates in the future, potentially reaching 1.6T or higher due to its increased power handling capacity.

800G Transceiver Form Factors Parameter Comparison:

QSFP-DDOSFP
Size(length*width*height)89.4mm*18.35mm*8.5mm107.8mm*22.58mm*13.0mm
Electrical Lanes88
Single Lane Rate25Gbps/50Gbps/100Gbps25Gbps/50Gbps/100Gbps
Total Max Data Rate200G/400G/800G200G/400G/800G
ModulationNRZ/PAM4NRZ/PAM4
Backward Compatibility with QSFP+/QSFP28YesNo
Port density in 1U3636
Bandwidth in 1U14.4Tb/s14.4Tb/s
Power consumption Upper Threshold12W15W
ProductsTransceiver Modules; DAC & AOC cablesTransceiver Modules; DAC & AOC cables

Fibre producers favour OSFP and QSFP-DD. While the latter is typically preferred for telecommunications applications, the former is seen as more suitable for data centre environments.

How to Choose 800G Transceiver for Your Data Center?

To select the appropriate 800G transceiver for your network application, thorough evaluation of factors like transmission distance, fibre type, and form factor is crucial.

The 800G QSFP-DD module utilises Broadcom 7nm DSP chip and COB packaging, with an MTP/MPO-16 connector. However, different models of the 800G QSFP-DD module vary in power consumption and transmission distance. It is suitable for high-speed network environments such as data centres, cloud computing, and large-scale networks, meeting the demand for high bandwidth and large-capacity data transmission.

FS P/NPower ConsumptionDistanceSMF/MMF
QDD-SR8-800G≤13W50mMMF
QDD800-PLR8-B1≤18W10kmSMF
QDD800-XDR8-B1≤18W2kmSMF
QDD-DR8-800G≤18W500mSMF

The 800G OSFP module also features Broadcom 7nm DSP chip and COB packaging. However, it comes in two types: Ethernet and Infinite Bandwidth, with variations in power consumption and connectors between different models. It is suitable for networks like data centres, cloud computing, and ultra-large-scale networks.

FS P/NPower ConsumptionConnectorDistanceSMF/MMF
OSFP800-2LR4-A2≤18WDual LC Duplex10kmSMF
OSFP800-PLR8-B1≤16.5WMTP/MPO-1610kmSMF
OSFP800-PLR8-B2≤16.5WDual MTP/MPO-1210kmSMF
OSFP-2FR4-800G≤18WDual LC Duplex2kmSMF
OSFP800-XDR8-B1≤16.5WMTP/MPO-162kmSMF
OSFP800-XDR8-B2≤16.5WDual MTP/MPO-122kmSMF
OSFP800-DR8-B1≤16.5WMTP/MPO-16500mSMF
OSFP-DR8-800G≤16WDual MTP/MPO-12500mSMF
OSFP-SR8-800G≤15WDual MTP/MPO-1250mMMF
OSFP-DR8-800G≤16.5WDual MTP/MPO-12500mSMF
OSFP-2FR4-800G≤16.5WDual MTP/MPO-122kmSMF

Conclusion

As technology continues to progress and innovate, we anticipate 800G optical modules will increasingly contribute to practical applications and drive advancements in the digital communication sector.

FS offers a range of 800G optical modules to meet your network construction needs. Visit the FS website for information and enjoy free technical support.

Revolutionize High-Performance Computing with RDMA

To address the efficiency challenges of rapidly growing data storage and retrieval within data centers, the use of Ethernet-converged distributed storage networks is becoming increasingly popular. However, in storage networks where data flows are mainly characterized by large flows, packet loss caused by congestion will reduce data transmission efficiency and aggravate congestion. In order to solve this series of problems, RDMA technology emerged as the times require.

What is RDMA?

RDMA (Remote Direct Memory Access) is an advanced technology designed to reduce the latency associated with server-side data processing during network transfers. Allowing user-level applications to directly read from and write to remote memory without involving the CPU in multiple memory copies, RDMA bypasses the kernel and writes data directly to the network card. This achieves high throughput, ultra-low latency, and minimal CPU overhead. Presently, RDMA’s transport protocol over Ethernet is RoCEv2 (RDMA over Converged Ethernet v2). RoCEv2, a connectionless protocol based on UDP (User Datagram Protocol), is faster and consumes fewer CPU resources compared to the connection-oriented TCP (Transmission Control Protocol).

Building Lossless Network with RDMA

The RDMA networks achieve lossless transmission through the deployment of PFC and ECN functionalities. PFC technology controls RDMA-specific queue traffic on the link, applying backpressure to upstream devices during congestion at the switch’s ingress port. With ECN technology, end-to-end congestion control is achieved by marking packets during congestion at the egress port, prompting the sending end to reduce its transmission rate.

Optimal network performance is achieved by adjusting buffer thresholds for ECN and PFC, ensuring faster triggering of ECN than PFC. This allows the network to maintain full-speed data forwarding while actively reducing the server’s transmission rate to address congestion.

Accelerating Cluster Performance with GPU Direct-RDMA

The traditional TCP network heavily relies on CPU processing for packet management, often struggling to fully utilize available bandwidth. Therefore, in HPC environments, RDMA has become an indispensable network transfer technology, particularly during large-scale cluster training. It surpasses high-performance network transfers in user space data stored in CPU memory and contributes to GPU transfers within GPU clusters across multiple servers. And the Direct-RDMA technology is a key component in optimizing HPC performance, and NVIDIA enhances the performance of GPU clusters by supporting the function of GPU Direct-RDMA.

Streamlining RDMA Product Selection

In building high-performance RDMA networks, essential elements like RDMA adapters and powerful servers are necessary, but success also hinges on critical components such as high-speed optical modules, switches, and optical cables. As a leading provider of high-speed data transmission solutions, FS offers a diverse range of top-quality products, including high-performance switches, 200/400/800G optical modules, smart network cards, and more. These are precisely designed to meet the stringent requirements of low-latency and high-speed data transmission.

Empowering Your 800G Networks with MTP/MPO Fiber Cables

In the era of ultra-high-speed data transmission, MTP/MPO cables have become a key player, especially in the context of 800G networks. In essence, MTP/MPO cables emerge as catalysts for the evolution toward 800G networks, offering a harmonious blend of high-density connectivity, reliability, and scalability. This article will delve into the advantages of MTP/MPO cables in 800G networks and provide specific solutions for constructing an 800G network, offering valuable insights for upgrading your existing data center.

Challenges Faced in 800G Data Transmission

As a critical hub for storing and processing vast amounts of data, data centers require high-speed and stable networks to support data transmission and processing. The 800G network achieves a data transfer rate of 800 Gigabits per second (Gbps) and can meet the demands of large-scale data transmission and processing in data centers, enhancing overall efficiency.

Therefore, many major internet companies are either constructing new 800G data centers or upgrading existing data centers from 100G, 400G to 800G speeds. However, the pursuit of 800G data transmission faces numerous complex challenges that necessitate innovative solutions. Here, we analyze the intricate obstacles associated with achieving ultra-fast data transmission.

Insufficient Bandwidth & High Latency

The 800G network demands extensive data transmission, placing higher requirements on bandwidth. It necessitates network equipment capable of supporting greater data throughput, particularly in terms of connection cables. Ordinary optical fibers typically consist of a single fiber within a cable, and their optical and physical characteristics are inadequate for handling massive data, failing to meet the high-bandwidth requirements of 800G.

While emphasizing high bandwidth, data center networks also require low latency to meet end-user experience standards. In high-speed networks, ordinary optical fibers undergo more refraction and scattering, resulting in additional time delays during signal transmission.

Limited Spatial Layout

The high bandwidth requirements of 800G networks typically come with more connection ports and optical fibers. However, the limited space in data centers or server rooms poses a challenge. Achieving high-density connections requires accommodating more connection devices in the constrained space, leading to crowded layouts and increased challenges in space management and design.

Complex Network Architecture

The transition to an 800G network necessitates a reassessment of network architecture. Upgrading to higher data rates requires consideration of network design, scalability, and compatibility with existing infrastructure. Therefore, the cabling system must meet both current usage requirements and align with future development trends. Given the long usage lifecycle of cabling systems, addressing how to match the cabling installation with multiple IT equipment update cycles becomes a challenging problem.

High Construction Cost

Implementing 800G data transmission involves investments in infrastructure and equipment. Achieving higher data rates requires upgrading and replacing existing network equipment and cabling management patterns, incurring significant costs. Cables, in particular, carry various network devices, and their required lifecycle is longer than that of network equipment. Frequent replacements can result in resource wastage.

Effectively addressing these challenges is crucial to unlocking the full potential of a super-fast, efficient data network.

Unlocking 800G Power: MTP/MPO Cables’ Key Advantages

The significance of MTP/MPO cables in high-speed networks, especially in 800G networks, lies in their ability to manage the escalating data traffic efficiently. The following are key advantages of MTP/MPO cables:

High Density, High Bandwidth

MTP/MPO cables adopt a high-density multi-fiber design, enabling the transmission of multiple fibers within a relatively small connector. This design not only provides ample bandwidth support for data centers, meeting the high bandwidth requirements of an 800G network, but also helps save space and supports the high-density connection needs for large-scale data transfers.

Additionally, MTP/MPO cables exhibit excellent optical and mechanical performance, resulting in low insertion loss in high-speed network environments. By utilizing a low-loss cabling solution, they effectively contribute to reducing latency in the network.

Flexibility and Scalability

MTP/MPO connectors come in various configurations, accommodating different fiber counts (8-core, 12-core, 16-core, 24-core, etc.), supporting both multimode and single-mode fibers. With trunk and breakout designs, support for different polarities, and male/female connector options, these features allow seamless integration into various network architectures. The flexibility and scalability of MTP/MPO connectors enable them to adapt to evolving network requirements and facilitate future expansions, particularly in the context of 800G networks.

Efficient Maintenance

The high-density and compact design of MTP/MPO cables contribute to saving rack and data room space, enabling data centers to utilize limited space resources more efficiently. This, in turn, facilitates the straightforward deployment and reliable operation of 800G networks, reducing the risks associated with infrastructure changes or additions in terms of cost and performance. Additionally, MTP/MPO cables featuring a Plenum (OFNP) outer sheath exhibit fire resistance and low smoke characteristics, minimizing potential damage and saving on cabling costs.

Scaling the 800G Networks With MTP/MPO Cables

In the implementation of 800G data transmission, the wiring solution is crucial. MTP/MPO cables, as a key component, provide reliable support for high-speed data transmission. FS provides professional solutions for large-scale data center users who require a comprehensive upgrade to 800G speeds. Aim to rapidly increase data center network bandwidth to meet the growing demands of business.

Newly Built 800G Data Center

Given the rapid expansion of business, many large-scale internet companies choose to build new 800G data centers to enhance their network bandwidth. In these data centers, all network equipment utilizes 800G switches, combined with MTP/MPO cables to achieve a direct-connected 800G network. To ensure high-speed data transmission, advanced 800G 2xFR4/2xLR4 modules are employed between the core switches and backbone switches, and 800G DR8 modules seamlessly interconnect leaf switches with TOR switches.

To simplify connections, a strategic deployment of the 16-core MTP/MPO OS2 trunk cables directly connects to 800G optical modules. This strategic approach maximally conserves fiber resources, optimizes wiring space, and facilitates cable management, providing a more efficient and cost-effective cabling solution for the infrastructure of 800G networks.

Upgrade from 100G to 800G

Certainly, many businesses choose to renovate and upgrade their existing data center networks. In the scenario below, engineers replaced the original 8-core MTP/MPO-LC breakout cable with the 16-core version, connecting it to the existing MTP cassettes. The modules on both ends, previously 100G QSFP28 FR, were upgraded to 800G OSFP XDR8. This seamless deployment migrated the existing structured cabling to an 800G rate. It is primarily due to the 16-core MTP/MPO-LC breakout cable, proven as the optimal choice for direct connections from 800G OSFP XDR8 to 100G QSFP28 FR or from 800G QSFP-DD/OSFP DR8 to 100G QSFP28 DR.

In short, this solution aims to increase the density of fiber optic connections in the data center and optimize cabling space. Not only improves current network performance but also takes into account future network expansion.

Elevating from 400G to the 800G Network

How to upgrade an existing 400G network to 800G in data centres? Let’s explore the best practices through MTP/MPO cables to achieve this goal.

Based on the original 400G network, the core, backbone, and leaf switches have all been upgraded to an 800G rate, while the TOR (Top of Rack) remains at a 400G rate. The core and backbone switches utilise 800G 2xFR4/2xLR4 modules, the leaf switches use 800G DR8 modules, and the TOR adopts 400G DR4 modules. Deploying two 12-core MTP/MPO OS2 trunk cables in a breakout configuration between the 400G and 800G optical modules facilitates interconnection.

Furthermore, there is a second connectivity option where the 800G port optical module utilises OSFP SR8, the 400G port uses OSFP SR4 optical module, and the intermediate cables are connected using 12-core MTP® OM4 trunk cables.

These two cabling solutions enhance scalability, prevent network bottlenecks, reduce latency, and are conducive to expanding bandwidth when transitioning from lower-speed to higher-speed networks in the future. Additionally, this deployment retains the existing network equipment, significantly lowering cost expenditures.

ItemProductDescription
1OSFP-DR8-800GNVIDIA InfiniBand MMS4X00-NM compatible OSFP 800G DR8 PAM4 2x DR4 1310nm 500m DOM dual MPO-12/APC NDR SMF optical transceiver, finned top.
2OSFP800-XDR8-B1Generic compatible 800GBASE-XDR8 OSFP PAM4 1310nm 2km DOM MTP/MPO-16 SMF optical transceiver module.
3OSFP-2FR4-800GNVIDIA InfiniBand MMS4X50-NM compatible OSFP 800G 2FR4 PAM4 1310nm 2km DOM dual LC duplex/UPC NDR SMF optical transceiver, finned top.
4OSFP-SR8-800GNVIDIA InfiniBand MMA4Z00-NS compatible OSFP 800G SR8 PAM4 2 x SR4 850nm 50m DOM dual MPO-12/APC MMF NDR finned top optical transceiver module for QM9790/9700 switches.
5OSFP-SR4-400G-FLNVIDIA InfiniBand MMA4Z00-NS400 compatible OSFP 400G SR4 PAM4 850nm 50m DOM MPO-12/APC MMF NDR flat top optical transceiver module for ConnectX-7 HCA.
616FMTPSMFMTP®-16 APC (Female) to MTP®-16 APC (Female) OS2 single mode standard IL trunk cable, 16 fibers, plenum (OFNP), yellow, for 800G network connection.
716FMTPLCSMFMTP®-16 APC (Female) to 8 LC UPC duplex OS2 single mode standard IL breakout cable, 16 Fibers, plenum (OFNP), yellow, for 800G network connection.
812FMTPSMFMTP®-12 (Female) to MTP®-12 (Female) OS2 single mode elite trunk cable, 12 fibers, type B, plenum (OFNP), yellow.
912FMTPOM4MTP®-12 APC (Female) to MTP®-12 APC (Female) OM4 multimode elite trunk cable, 12 fibers, type B, plenum (OFNP), magenta.

For more specific 800G connectivity solutions, please refer to 800G MTP/MPO Cabling Guide.

Conclusion

Ultimately, the diverse range of MTP/MPO cable types provides tailored solutions for different connectivity scenarios in 800G networks. As organizations navigate the complexities of high-speed data transmission, MTP/MPO cables stand as indispensable enablers, paving the way for a new era of efficient and robust network infrastructures.

How FS Can Help

The comprehensive networking solutions and product offerings not only save costs but also reduce power consumption, delivering higher value. Considering an upgrade to 800G for your data center network? FS tailors customized solutions for you. Don’t wait any longer—Register as an FS website member now and enjoy free technical support.

Choosing the Right MTP/MPO Cable: A Guide to Core Numbers

Choosing the right MTP/MPO cable ensures efficient and reliable data transmission in today’s fast-paced digital world. With the increasing demand for high-speed connectivity, it is essential to understand the importance of core numbers in MTP/MPO cables. In this guide, we will explore the significance of core numbers and provide valuable insights to help you decide when selecting the right MTP/MPO cable for your specific needs. Whether setting up a data center or upgrading your existing network infrastructure, this article will serve as a comprehensive resource to assist you in choosing the right MTP/MPO cable.

What is an MTP/MPO cable

An MTP/MPO cable is a high-density fiber optic cable that is commonly used in data centers and telecommunications networks. It is designed to provide a quick and efficient way to connect multiple fibers in a single connector.

MPO and MTP cables have many attributes in common, which is why both are so popular. The key defining characteristic is that these cables have pre-terminated fibers with standardized connectors. While other fiber optic cables have to be painstakingly arrayed and installed at each node in a data center, these cables are practically plug-and-play. To have that convenience while still providing the highest levels of performance makes them a top choice for many data center applications.

How Many Types of MTP/MPO cables

MTP/MPO cables consist of connectors and optical fibers ready to connect. When it comes to types, MTP/MPO fiber cables fall on MTP/MPO trunk cables and MTP/MPO harness/breakout cables.

MTP/MPO trunk cables

MTP/MPO trunk cables, typically used for creating backbone and horizontal interconnections, have an MTP/MPO connector on both ends and are available from 8 fibers up to 48 in one cable.

MTP/MPO Harness/Breakout Cables

Harness/Breakout cables are used to break out the MTP/MPO connector into individual connectors, allowing for easy connection to equipment. MTP/MPO conversion cables are used to convert between different connector types, such as MTP to LC or MTP to SC.

The MTP/MPO cables also come in different configurations, such as 8-core, 12-core, 16-core, 32-core, and more, depending on the specific needs of the application. This flexibility in configurations enables users to tailor their choices according to the scale and performance requirements of their networks or data centers. As technology advances, the configurations of MTP/MPO cables continually evolve to meet the increasing demands of data transmission.

How to Choose MTP/MPO cables

Selecting the appropriate core number for MTP/MPO cables resonates throughout the efficiency and performance of networks. In this section, we’ll delve into the decision-making factors surrounding core numbers in cables.

Network Requirements and Data Transmission Goals

Different network applications and data transmission needs may require varying numbers of cores. High-density data centers might necessitate more cores to support large-capacity data transmission, while smaller networks may require fewer cores.

Compatibility with Existing Infrastructure

When choosing the core number for MTP/MPO cables, compatibility with existing infrastructure is crucial. Ensuring that the new cables match existing fiber optic equipment and connectors helps avoid unnecessary compatibility issues.

Consideration for Future Scalability

As businesses grow and technology advances, future network demands may increase. Choosing MTP/MPO cables with a larger number of cores allows for future expansion and upgrades.

Budget and Resource Constraints

Budget and resources also play a role in core number selection. Cables with a larger number of cores tend to be more expensive, while cables with fewer cores may be more cost-effective. Therefore, finding a balance between actual requirements and the available budget is essential.

MTP/MPO Cabling Guide to Core Numbers

40G MTP/MPO Cabling

A 12-fiber MTP/MPO connector interface can accommodate 40G, which is usually used in a 40G data center. The typical implementations of MTP/MPO plug-and-play systems split a 12-fiber trunk into six channels that run up to 10 Gigabit Ethernet (depending on the length of the cable). 40G system uses a 12-fiber trunk to create a Tx/Rx link, dedicating 4 fibers for 10G each of upstream transmit, and 4 fibers for 10G each of downstream receive.

40G-10G Connection

In this scenario, a 40G QSFP+ port on the FS S5850 48S6Q switch is split up into 4 10G channels. An 8-fiber MTP-LC harness cable connects the 40G side with its MTP connector and the four LC connectors link with the 10G side.

40G-40G Connection

As shown below, a 12-fiber MTP trunk cable is used to connect two 40G optical transceivers to realize the 40G to 40G connection between the two switches. The connection method can also be applied to a 100G-100G connection.

40G Trunk Cabling

24 Fibers MTP® to MTP® Interconnect Conversion Harness Cable is designed to provide a more flexible multi-fiber cabling system based on MTP® products. Unlike MTP® harness cable, MTP® conversion cables are terminated with MTP® connectors on both ends and can provide more possibilities for the existing 24-fiber cabling system. The 40/100G MTP® conversion cables eliminate the wasted fibers in the current 40G transmission and upcoming 100G transmission. Compared to purchasing and installing separate conversion cassettes, using MTP® conversion cables is a more cost-effective and lower-loss option.

100G MTP/MPO Cabling

QSFP28 100G transceivers using 4 fiber pairs have an MTP/MPO 12f port (with 4 unused fibers). Transmission for short distances (up to 100m) could be done most cost-effectively over multimode fiber using SR4 transmission. Longer distances over single mode use PSM4 transmission over 8 fibers. Transmission over 4 fiber pairs enables both multimode and single-mode transceivers to be connected 1:4 using MPO-LC 8 fiber breakout cables. One QSFP28 100G can connect to four SFP28 25G transceivers.

100G SR4 Parallel BASE-8 over Multimode Fibre

QSFP28 100G SR4 are often connected directly together due to their proximity within switching areas.

Equally QSFP28 SR4 are often connected directly to SFP28 25G ports within the same rack. For example, from a switch 100G port to four different servers with 25G ports.

The 12-core MTP/MPO cables can also be used for 100G parallel to parallel connection. Through the use of MTP patch panels, network reliability is enhanced, ensuring the normal operation of other channels even if a particular channel experiences a failure. Additionally, by increasing the number of parallel channels, it can meet the continuously growing data demands. This flexibility is crucial for adapting to future network expansions.

100G PMS4 Parallel BASE-8 over Singmode Fibre

QSFP28 100G PMS4 are often connected directly together due to their proximity within switching areas.

Equally QSFP28 ports are often connected directly to SFP28 25G ports within the same rack. For example, from a switch 100G port to four different servers with 25G ports.

200G MTP/MPO Cabling

Although most equipment manufacturers (Cisco, Juniper, Arista, etc) are bypassing 200G and jumping from 100G to 400G, there are still some 200G QSFP-DD transceivers on the market, like FS QSFP56-SR4-200G and QSFP-FR4-200G.

200G-to-200G links

MTP (MPO) 12 fiber enables the connection of 2xQSFP56-SR4-200G to each other.

400G MTP/MPO Cabling

MTP/MPO cables with multi-core connectors are used for optical transceiver connection. There are 4 different types of application scenarios for 400G MTP/MPO cables. Common MTP/MPO patch cables include 8-fiber, 12-core, and 16-core. 8-core or 12-core MTP/MPO single-mode fiber patch cable is usually used to complete the direct connection of two 400G-DR4 optical transceivers. 16-core MTP/MPO fiber patch cable can be used to connect 400G-SR8 optical transceivers to 200G QSFP56 SR4 optical transceivers, and can also be used to connect 400G-8x50G to 400G-4x100G transceivers. The 8-core MTP to 4-core LC duplex fiber patch cable is used to connect the 400G-DR4 optical transceiver with a 100G-DR optical transceiver.

For more specific 400G connectivity solutions, please refer to FS 400G MTP/MPO Cabling.

800G MTP/MPO Cabling Guide

In the higher-speed 800G networking landscape, the high density, high bandwidth, and flexibility of MTP/MPO cables have played a crucial role. Leveraging various branching or direct connection schemes, MTP/MPO cables are seamlessly connected to 800G optical modules, 400G optical modules, and 100G optical modules, enhancing the richness and flexibility of network construction.

800G Connectivity with Direct Connect Cabling

16 Fibers MTP® trunk cable is designed for 800G QSFP-DD/OSFP DR8 and 800G OSFP XDR8 optics direct connection and supporting 800G transmission for Hyperscale Data Center.

When using the current 800G optical module, such as the OSFP 800G SR8, direct connection requires 12 fibre MTP® trunk cables.

800G to 8X100G Interconnect

16 fibers MTP®-LC breakout cables are optimized for 800G OSFP XDR8 to 100G QSFP28 FR, 800G QSFP-DD/OSFP DR8 to 100G QSFP28 DR optics direct connection, and high-density data center applications.

800G to 2X400G Interconnect

16 fiber MTP® conversion cable is designed to provide a more flexible multi-fiber cabling system based on MTP® products. Compared to purchasing and installing separate conversion cassettes, using MTP® conversion cables is a more cost-effective and lower-loss option. In the network upgrade from 400G to 800G, the ability to directly connect an 800G optical module and two 400G optical modules provides a more efficient use of cabling space, resulting in cost savings for cabling.

When using InfiniBand technology for networking purposes, 12 fibre MTP® trunk cable is designed for linking InfiniBand and Ethernet multimode twin-port OSFP and single-port OSFP and QSFP112 transceivers together.

Conclusion

In a word, the choice of core number for MTP/MPO cables depends on the specific requirements of the network application. Matching the core number with the requirements of each scenario ensures optimal performance and efficient resource utilization. A well-informed choice ensures that your MTP/MPO cable not only meets but exceeds the demands of your evolving connectivity requirements.

How FS Can Help

As a global leader in enterprise-level ICT solutions, FS not only offers a variety of MTP/MPO cables but also customizes exclusive MTP/MPO cabling solutions based on your requirements, helping your data center network achieve a smooth upgrade. In the era of rapid growth in network data, the time has come to make a choice – FS escorts your data center upgrade. Register as an FS website member and enjoy free technical support.

Copper Cable vs Fibre Optic Cable Price, Is the Copper Really Cheaper?

Budget is always the most direct choice factor when installing cables. Copper cable vs fibre optic cable price, it’s true that the popular impression is that copper is cheap, fibre is expensive. Well, at a certain period in the past decades, it’s true. However, today with the development of networking, is copper cabling really cheaper than fibre optic cabling?

Copper Cable vs Fibre Optic Cable Price

Copper vs Fibre: What’s the Difference?

Copper and fibre optic cable are different cable types. Copper cable, also called RJ45 Ethernet cable, transmits data by electrical impulses, which is perfectly adequate for voice signals. Copper cables have many types such as Cat5, Cat6, Cat7 and Cat8, which can reach different transmission speeds. Cat5 Ethernet cable is once as slow as 10 Mbps over 100 metres. However, on today’s market, copper is getting faster. That the latest technology Cat8 Ethernet cable speed now can reach 40Gbps for 20 metres, but note that it has the notable limitation with regard to distance.

Unlike copper cable, fibre cable is made from fine hair-like glass fibres, which transmits data via light. Therefore, fibre cable does not conduct electricity, which is impervious to radio frequency interference. It’s naturally more durable than copper that it can withstand tougher environments and harsher weather conditions. As for the speed, fibre definitely wins for sheer speed and longer transmission distance. For example, the maximum distance of single mode fibre OS2 can be up to 200km. The following table makes a clear comparison between copper and fibre cables.

 
Fibre
Copper
Distance
Longer
Shorter
Speed
Faster
Fast
Durability
Lower
High
Spark Hazard
Hazardous
No spark hazard
Noise
Immune
Susceptible to EM/RFI interference, crosstalk and voltage surges

Factors of Copper Cable vs Fibre Optic Cable Price

People always believe the cost of fibre optic cables are expensive. Is it true? The following will discuss it in two main factors.

Installation Cost

Due to the technological differences between fibre and copper cables, their installation cost are different. Fibre’s immunity to electromagnetic interference (EMI) can save users’ cost, because they don’t need to lay fibre optic cables in the pipeline for avoiding electromagnetic interference. But copper cables need some protection, which increases the installation cost. Besides, in many scenarios, users need distributed cabinets for copper network while fibres don’t require this due to the longer distances. There are duplicated costs of building comms rooms, air con, ventilation, UPS (Uninterruptible Power Source) that people should not ignore in copper cabling. All these installation costs will exceed the extra cost of fibre equipment in a centralized fibre architecture. Therefore, if people decide to build a new data center, choosing fibre-based LAN is a much more economical solution than a copper networking environment.

Support Cost

Fibre optic cables are not fire hazard since light can not catch on fire. This means fibre cabling can save the cost of fire prevention. And fibre cables don’t break as easily, that customers will not worry about replacing them frequently. Thus, the support cost of fibre is less than the copper cable.
On the other hand, the increasing demand for fibre cables results in dropping prices. For example, at FS.COM, a Cat6 UTP cable with 3ft length needs 2.2 dollars, while LC to LC UPC duplex single mode fibre patch cable with 3ft length just costs 3 dollars. The price difference is narrow. Therefore, when copper cable vs fibre optic cable price, the cost of copper cabling is not much cheaper than fibres.

Conclusion

In conclusion, copper cable vs fibre optic cable price, the copper one is not always the cheapest choice. When building a new network, people should not ignore the installation and support costs of these different cabling solutions. It’s wise to choose one according to the actual installation environments. If you have any further questions about fibre or copper cabling, you can always get in touch with FS.COM staff via sales@fs.com.

SFP vs RJ45 vs GBIC: When to Choose Which?

SFP, RJ45, and GBIC transceiver modules are three main kinds of 1GbE transceiver modules on the market. You may be puzzled by so many choices of transceiver modules. Don’t worry about it. This article will help you clarify the differences among SFP vs RJ45 vs GBIC transceivers and give you some suggestions about how to choose from them.

What Is an SFP Transceiver?

Short for small form-factor pluggable, an SFP module is a kind of fiber optic transceiver module with LC duplex interface. It supports the transmission data rate of 1GbE. SFP optical transceivers can operate on single mode or multimode fiber patch cables. The transmission distance of SFP modules ranges from 550m to 150km.

Figure1: SFP transceiver module

What Is an RJ45 Transceiver?

SFP copper RJ45 transceiver is a kind of transceiver with copper RJ45 interface. SFP copper RJ45 transceiver modules can support the transmission data rate of 1GbE. They are often used with Cat5 cables. SFP copper RJ45 transceivers are popular to be used for short distance transmission, because the overall cost of the copper network is lower compared with the optical network.

RJ45 sfp vs rj45 vs gbic

Figure2: SFP copper RJ45 transceiver module

What Is a GBIC Transceiver?

Gigabit interface converter (GBIC), is a kind of hot pluggable fiber optic transceiver module. With the data rate of 1GbE, GBIC transceiver modules can transmit data through the distance of 550m to 80km. A GBIC module supports the same data rate with an SFP module, but a GBIC transceiver module has twice the size of an SFP transceiver module.

GBIC sfp vs rj45 vs gbic

Figure3: GBIC transceiver module

SFP vs RJ45 vs GBIC: What’s the Difference?

After getting a general idea about what are SFP, RJ45, and GBIC transceivers, we will talk about the differences among them. The following chart shows the differences among SFP vs RJ45 vs GBIC transceiver modules from 4 aspects.

Transceiver module
SFP
SFP copper RJ45
GBIC
Interface
LC duplex
RJ45
SC duplex
Transmission distance
550m~150km
100m
550m~80km
Cable type
SMF/MMF
Cat 5
SMF/MMF
Data rate
1000Mbps
1000Mbps
1000Mbps

SFP vs RJ45 vs GBIC: When to Choose Which?

As is shown in the chart, SFP, SFP copper RJ45, and GBIC transceiver modules are all used in 1Gbit data transmission. Then when to choose which for the 1GbE network?

When to Choose SFP Transceivers?

Compared with GBIC transceiver modules, SFP modules have a smaller size. So SFP modules allow having more interfaces on a line card or a switch. Besides, SFP transceivers can support the transmission distance much longer than SFP copper RJ45 transceivers and GBIC transceivers. So if you require long transmission distance,  SFP transceivers can meet your need. Last but not least, If you already have a line card or a switch with empty SFP slots, then you need to adapt to that.

When to Choose SFP Copper RJ45 Transceivers?

When your budget is not enough to use SFP transceivers, you can choose SFP copper RJ45 transceivers for short-distance transmission. If you have the requirement of long-distance transmission afterward, you can use SFP to RJ45 slot media converters. For they can provide an economical path to extend the distance of an existing network with fiber cabling.

When to Choose GBIC Transceivers?

If you already have a line card or a switch with unoccupied GBIC slots, then you need to choose GBIC transceivers to make full use of the empty slots on your switch. In fact, GBIC transceiver modules are gradually replaced by SFP modules on the market. For SFP transceivers are regarded as the upgraded version of GBIC modules.

Summary

The differences among SFP vs RJ45 vs GBIC transceiver modules include the interface type, transmission distance, and cable type. Your choice among them depends on different situations. If you want to buy Cisco SFP modules or other transceiver modules with high quality and low cost, please contact us at sales@fs.com.