Overview of CWDM Mux and DWDM Multiplexer

As the CWDM Mux/demux and DWDM mux/demux goods are playing an even more and more important role inside the data transmission field, today organic beef focus on the key options that come with CWDM mux and DWDM mux first.

As everybody knows, the CWDM Mux / demux module is based on dielectric thin-film technology designed for integration in low cost Metro and Access networks. These include applications such as fiber to the home, business or curb. The module enables 4 or 8 channels to be either combined (added) or separated (dropped). The fileters operate with a channel spacing of 20nm corresponding to standard CWDM wavelengths. CWDM Mux Demux module is a device to allow multiple optical signals at different wavelengths to pass through a single optical fiber strand. The common configuration of CWDM mux/demux module is 2CH, 4CH, 8CH, 16CH, 18CH CWDM mux/demux module. 3 Single fiber or dual fiber connection for CWDM Mux/demux are available. FiberStore’s CWDM modules has low insertion loss, high channel isolation, flat passband. Additional filters, to enable cascading of devices, or addition of 1310nm or other wavelength, can also be included in the module.

The CWDM mux products always own these following features:

> Passive, no electric power required. (MTBF ca. 500 years)
> Low insertion loss
> Accepts any data rate and any protocol on any port up to 10 Gbps, also 40 Gbps (DPSK, DQPSK) and 100 Gbps (DPQPSK)
> Fully transparent at all data rates and protocols from T1 to 40 Gbps
> 1RU Rack-mount chassis Low profile modular design
> Simple to install, requires no configuration or maintenance
> Low-cost transceivers applicable, existing equipment can still be used
> ISO 9001 manufacturing facility

And for the DWDM, which represents Dense Wavelength Division Multiplexing was created to multiplex DWDM channels into one or two fibers. This sort of products could make the optimum usage of your existing fiber optic infrastructure in an ideal way. It puts multiple signals together and sends them simultaneously along a fiber, simply with transmissions happening at different wavelengths, and also this turns an individual fiber to the virtual equal of a handful of fibers. It is really a good and also the most reasonable solution to date that will meet our increasing desires of large data transmissions. And also by using the impressive DWDM technique, it will transmit greater than 40 connections of numerous standards, data rates or protocols more than one common fiber optic link.

For the DWDM products, the DWDM mux products combine several data signals into one for transporting on the single fiber as the dwdm demux separate the signals into one for transporting on the single fiber as the dwdm mux products combine several data signals into one for transporting on the single fiber as the dwdm demux separate the signals on the opposite end. Each signal reaches a different wavelength, they cooperate with each other perfectly.

The common configuration of DWDM mux is 4, 8, 16 and 32 channels. These DWDM modules passively multiplex the optical signal outputs from 4 or maybe more electronic devices, send on them an
individual optical fiber and then de-multiplex the signals into separate, distinct signals for input into electronic devices in the opposite end with the fiber optic link.

The DWDM mux products always own these following features:

> Low insertion loss and high isolation.

> Simple to install, requires no configuration, and disassembles easily to clean.

> Fully transparent at all data rates and protocols.

> Completely passive, no power required, no cooling and so on.

As the very best China fiber optic products supplier, FiberStore Inc. provides lots of this sort of products which are reliable and economical. If you may well not find it on our website, you can call us to customize it to suit your needs. For standalone multiplexers, it could increase dual fiber link capacity up to 18 channels and could be combined with a lot of the CWDM GBIC, SFP, XFP, X2, XENPAK, SFP modules. It’s also super easy to make use of and install, and also have some common features because the DWDM mux. If you would like to know our fiber optic cables, optical cable price, indoor outdoor cable and more, please visit our website or contact us.

Something About MPO MTP Fiber Cable

MPO/MTP stands for “Multiple-Fiber Push-On/Pull-off”. The purpose of MPO/MTP technology is that you can pull just one single cable with 8 (for example) fibers. So instead of patching 8 separate fiber cables, you only need to patch one cable with one connector. MPO/MTP Fiber Cable is used in various applications for all networking and device needs like 100 Gigabit modules.

MTP/MPO is usually used in ribbon fiber optic patch cords or ribbon fan-out multi-fiber assemblies. The ribbon fiber optic cables feature multi-fiberglass inside each single jacket, and MTP/MPO also multi a multi-fiberglass core inside each single connector. That is to say, there are several fiberglass connections in each single MTP/MPO fiber optic patch cord, for example, 4 fibers, 8 fibers, 12 fibers, etc. Typical MTP/MPO fiber optic patch cord assemblies like MTP/MPO to 8 LC, MTP/MPO to 12 SC, etc. MTP/MPO fiber optic patch cords are also available in single mode and multimode, like UPC and APC Polish.

MTP fiber optic patch cable has MTP fiber optic connectors which are upgraded versions of the former MPO. MTP has better mechanical and optic fiber performance compared with MPO. Both the MTP and MPO series cables are multi-fiber connectors. There are many fiber optic channels in each single connector. Because of such multi-fiber features, these connectors need to be used with multi-fiber cables, especially ribbon multi-fiber optic cables.

MTP and MPO cables are available in female-to-female or a male to male and male-to-female configurations. The male version has MTP pins. These can be made with 12-fiber MTP connectors, 24-fiber MTP connectors, and 48-fiber MTP connector variations. We use MTP fiber optic connectors for all of our MTP and MPO terminations so that the highest performance is accomplished. Many additional options and combinations are available. All multi-fiber optic cables are customizable.

To have a better understanding of MTP, I will introduce you to some MTP terminology as follows:

About MTP Trunks

The MTP Trunk cable is designed for Data Center Applications. This cable is a round cable with an outer diameter of 3,0 mm or 4,5 mm (with two jackets on both sides). The connector where this cable is terminated is the so-called MTP connector (female).

About MTP Fiber Optic Cassette
The MTP cassette is nothing more than a basic case that splits out MTP to SC/LC connectors, which is available for 12 SC/LC connectors and 24 connectors.

About MTP fanouts

MTP fanout cables are cables that are multiple cables that are bundled within the same jacket. This is also often referred to as a Breakout cable.

About Direct Splits (MTP to LC or MTP to SC cables)

MTP Direct Split cables are cables with the fanout made directly in the MTP connector. These are designed for high-density Data Center applications to plug into MTP cassettes and/or MTP patch panels.

FS provides many fiber optic products such as fiber patch cables, Armored Cables, Industrial Cables, and more. MPO/MTP fiber patch cables are available in UPC and APC finishes and support both multimode and single-mode applications. These fiber cables are tested with guaranteed quality, and they can be installed easily, which saves time and money.

How To Buy Bulk Fiber Optic Cable

Optical Fiber Cable Construction

The structure of bulk fiber optic cables have many important characteristics. The fiber optic cable construction needs to provide protection from the external environment in the installation and the fiber optic cable work life time.

They must provide mechanical protection for all the fibers inside the cable, in the meantime, the fiber optic cable has to be pretty easy to handle. Most the time, non-metallic strength members are needed to fully take advantage of fiber’s dielectric property.

Bulk fiber optic cable will experience tensile stress, abrasion, cutting, flexing, bending, crushing during the installation and its operation life. These mechanical stresses introduce macrobending, microbending, light signal loss attenuation.

Due to incomplete production, small surface defects often exist in the optical fibers. So in the real world, fibers tend to break at the cracks that begin from these surface defects under heavy tensile tension.

Bulk Fiber Optic Cable Structural Elements

Optical cables can be divided into several main types. However, the basic elements in a fiber cables are a central strength member, be it metallic or non-metallic, strength members, water barrier (dry water swelling tapes or water blocking gel), a fiber housing (loose tube), and cable sheaths. Armored fiber cables also have aluminum or steel armors for rodent protection for direct burial.

A central strength member sitting in the center of the cable, fiber glass do most of the time. The center provides rigid cable strength members, prevent bulk fiber cable from bending too fast. It also provides the core of the cable.

In addition to the power of the central member, as another layer of fiber strength member is also used. They are made from aramid yarn (most of the time), Nylon yard, fiber glass epoxy rod or even steel. Aramid yarn is also called Kevlar, it has a high breaking strain and about fiber times stronger than steel. They offer low weight and all-dielectric construction.

Types of Bulk Fiber Optic Cable

Bulk fiber optic cables can be categorized into several major types. That includes outdoor cablefiber optic breakout cable, Ribbon Fiber cable, Figure 8 Aerial cable, Loose tube cable and more.

To learn more about the type of fiber cable available on the market, or want to purchase our cable, please visit our website. As one of the best OEM fiber optic cable manufacturers, FiberStore provides a wide range of quality optical fiber cables with detailed specifications displayed for your convenient selecting. Per meter price of each fiber cable is flexible depending on the quantities of your order, making your cost of large order unexpected lower. Customers can also have the flexibility to custom the cable plant to best fit their needs. Only fiber cable that meets or exceeds industry standards is used to ensure quality products with best-in-class performance.

Fiber Optic Cable Construction

In any detailed discussion of how to deal with fiber optic cable, some fibers are discussed briefly and cable design is required. Eliminating confusion of different terms, and to provide an
understanding of cable construction will make handling the products less complicated.

Fiber

The cable cross section is two fiber cables for interconnect applications. The construction of the glass can be looked at separately from the design of the cable, as the fiber itself is constructed using distinct materials and is shipped by the fiber manufacturer as a finished product. FiberStore takes the coated optical fiber and incorporates it into a multitude of finished cable products.

All of the glass fiber used by FiberStore is manufactured using the same basic construction. Two layers of glass are covered by a protective coating, the fiber’s core and cladding are both made of silica glass. It is these two layers that propagate the light signal and determine the performance of the fiber. A slight difference in optical characteristics between these layers keeps the signal within the core region. The glass is protected by a dual layer of ultra-violet-cured acrylate material.The coating protects the surface of the glass from abrasion during normal routine handling, there by ensuring the glass maintains it’s high tensile strength. The acrylate coating, which also functions optically by stripping out any light which might enter the cladding region, isremoved for termination and splicing.

Buffer Types

All of FiberStore fiber optic cables fall into one of two categories: tight buffered or loose tube buffered. The two cable buffer styles exhibit different optical, mechanical, and costcharacteristics. Originally, loose tube cable constructions were developed for long haul telephony applications which required a rugged, low cost, high fiber count outside plant cable solution. In a premises wiring plan this cable type is often used between buildings, although recent developments in cable design have produced loose tube cable for indoor/outdoor applications (know indoor outdoor cable). The tight buffer cable construction was developed for both indoor and outdoor premises wiring applications. Most of FiberStore’s tight buffer cables are rugged enough for many inter building applications while offering the tight buffer design advantages of ease of terminations, meeting NEC flammability codes, and cable flexibility.

Tight Buffered Fiber

A thermoplastic material is extruded directly over the acrylate coating, increasing the outside diameter of the fiber to 900 micros (0.9 mm), an industry standard. The tight buffer supplies the fiber with added mechanical and environmental protection, increased size for easy handling, and a simple means of adding color coding for fiber identification. During connectorization, the buffer is stripped back to an exact length as required by the connector manufacturer.

Loose Buffered Fiber

In loose tube cable, the coated fiber “floats” within a rugged, abrasion resistant, oversized tube which is filled with optical gel. Since the tube does not have direct contact with the fiber, any cable material expansion or contraction will not cause stress on the fiber. Much of the external stress placed on the tube also will not be transferred to the fiber. The non-hygroscopic gel prevents water from entering the tube.

Strength Members

FiberStore optical fiber cable designs utilize aramid yarn as the primary strength member. Some designs also use a fiberglass central strength member. Both of these materials serve as the load bearing members of an optical fiber cable during installation. In many cables the aramid also acts as a strength member during termination.

Core Wrap and Ripcords

Core wraps and ripcords are designed to make removal of the exterior cable sheath easier, preventing unnecessary stress to the core. The non-hygroscopic core wrap creates a barrier between the core and the jacket, preventing adhesion and facilitating jacket removal. Ripcords provide a means of stripping back the jacket without the use of invasive tools which could harm the cable core and damage fibers.

Outer Jacket

The true cable jacket is usually the outermost element in the cable design. It serves to protect the cable against environmental hazards and gives the installer a mean of managing the cable. Without the outer jacket, in many designs the buffered fibers would have only the aramid wrap to cover them. Typical jacket materials include Polyvinylchloride (PVC), Polyethylene (PE) or Polyvinylidene Fluoride (PVDF). Also, without selectively choosing the appropriate jacket material most cables would be entirely incapable of passing a flame test. Outer jackets are always stripped back to expose the fibers at the point of termination or connectorization.

If you would like to buy our optical fiber cables or want to know more about outdoor cables,hybrid cable please visit our website.

How To Distinguish Between Good or Bad The Quality of Fiber Optic Cable

1. Ointment. Ointment is mainly fine paste paste with cable, fiber paste normally should be full of the casing, cable paste should be under pressure every crevice of cable core. Now, fiber paste sufficient half-full or less the practice of cable extract some just wipe a layer of the cable core, while others are in the middle of the fiber optic cable two charge is not sufficient. This will make the fiber are not good protection, the impact of the transmission performance of optical fiber attenuation, poor water resistance less than the national standard, once the cable accidental seepage will cause the whole links seepage scrapped. Under normal circumstances, even accidental seepage simply repair a section of water seepage can, you do not need to start over. (National standard water-blocking performance: three meters of fiber optic cable, one meter of water column pressure round the clock impermeable.) If use poor ointment will also appear to be happening, and may because the ointment thixotropic, cause the fiber to cause microbending loss, the link transmission characteristics failed; ointment with acidic also with fiber optic cable metal materials analysis H reaction precipitation of hydrogen molecules, fiber case of H decay will increase dramatically, resulting in the entire link interrupt transmission.

2. Sheath. The cable sheath is necessary to adapt to many different complex climate, but also to ensure the stability of the long-term (at least 25 years). Cable jacket not only have a certain strength, low thermal deformation, wear, water permeability, heat-recoverable, and coefficient of friction, but also should be strong resistance to environmental performance materials processing features. Less or bad sheath material cracking, water seepage through factory acceptance, but the quality is defective use for some time, using recycled plastics to replace quality polyethylene sheath material is more serious. High quality sheath material made of fibe optic cable, a cable skin smooth, bright, uniform thickness, no bubbles, otherwise the coarse skin of fiber optic cable, and a lot of very small pit, and because of the thin thickness, the entire outer diameter of the fiber optic cable will be muach smaller than the high quality cable. Indoor fiber optic cable, usually made of high quality flame retardant PVC, the appearance should be smooth, bright, good flexibility, easy to peel; and otherwise poor skin finish, easy and tight buffer fiber, aramid adhesion phenomenon.

3. Steel, aluminum. Steel, aluminum cable is mainly used to protect the fiber from mechanical side pressure, moisture and other effects, better cable typically use chrome-plated steel strip. Low quality fiber optic cable to only one side done ordinary iron rust treatment, or black (uncoated steel), instead of chrome-plated steel strip, over time, the cable will appear corroded, fiber optic hydrogen loss also aggravate andits easy separation do not constitute the sheath bonded sheath tide also very poor performance; of some places tinned strip instead of chrome-plated steel strip, tin-plated surface of the strip, the bubble is inevitable, so in humid, prone to corrosion under the conditions of the atmosphere and surface condensation or water, especially under acidic conditions, corrosion faster. The tin plating layer is poor in heat resistance, melting at 232 degrees Celsius, only the application of due to squeeze sheaths when the high temperature, such that the peel strength uncertainty affect the cable anti-surge performance. Chromium melting point of 1900 degrees Celsius, chemically very stable at room temperature in air or water will not rust, corrosion resistance, very good resistance to environmental performance, easily oxidized due to surface passivation layer is formed so good. Aluminum generally failed thermal paste method coated aluminum instead of cast qualified coated aluminum, which also affect cable performance.

4. Steel wire. The steel wire in the fiber optic cable mainly used to protect optical fiber from the mechanical tension. Good cable typically use for phosphating steel wire, high modulus short-term tension 1500N and 3000N. And low-quality fiber optic cable will be a very small diameter wire or ordinary steel instead of the one hand, easy to rust; On the other hand, is far less than the tensile strength 1500N construction may strain the fiber. High modulus phosphide stell wire is generally gray color, good toughness, not easy to bend; the alternative wire generally pinch in your hand can be bent a long time, the two rust fracture hanging cable box.

5. Loose tube. The installed fiber loose tube fiber optic cable is generally used polymer PBT material (poly (butylene terephthalate)), this loose tube, high strength, no deformation, anti-aging. Poor quality loose tube fiber optic cable is sometimes replaced with other materials, diameter thin, hand pinch flat, no different from drinking straw, can not afford the protective effect of the fiber.

6. Waterproof tape. Fiber optic cable with waterproof tape or water blocking yarn through the inside of the product showed a uniform distribution of high water-absorbing resin has strong water absorption, under the combined effect of the osmotic pressure, affinity, rubber elastic, super absorbent resin inhalation several times the weight of water. Further, the water-blocking powder once with water swollen gel will instantly, regardless to its much pressure is applied, moisture nor is extruded. Thus, with a water-absorbent resin containing water-blocking tape coated cable core, in case the outer wall of the fiber optic cable is damaged, the wound portion of the high water-absorbent resin to play due to expansion of the sealing effect, can prevent the entry of water to a minimum. Low-quality fiber optic cable commonly used non-woven fabric or paper tape, once the cable jacket is damaged, the consequences will be very serious.

7. Kevlar. Kevlar is a high-strength chemical fiber, most in the field of military-industrial complex, a bullet-proof vest is the producer of this material. It is a patented product of DuPont, is the major cost components of the indoor fiber optic cable, tight buffer fiber indoor cable is mainly used to protect against mechanical tension. Due to Kevlar high cost, poor quality of indoor fiber optic cable outer diameter is generally made ​​very thin, so you can by reducing the few shares aramid cost savings, or use an appearance similar to Kevlar polyester yarn instead (more common) polyester yarn almost can not bear what tension. So that the optical fiber laying easily strain or pull off.

8. Optical fiber. The fiber optic cable core raw materials, the good cable commonly used manufacturers of high quality core. Low-quality fiber optic cable is usually lower fiber and unsolicited fiber, these fibers due to the complex sources, quality is difficult to guarantee, sometimes multimode fiber often mixed with single-mode fiber, and the general lack of small factories necessary testing equipment, not fiberquality of judgment, more so the quality is difficult to be guaranteed. In addition, some bought with cheap short segment later cabled fiber splicing. The naked eye can not distinguish this fiber, the problems often encountered in the construction are: low transmission rate, short distance, fiber attenuation, not and pigtail docking, lack of flexibility, easily broken plate filament when even a single fiber a multi-mode, the other end is single-mode.

9. Coloring ink. Distinguish fiber in order to facilitate the construction of national standards be with bright color and high-quality fiber optic cable are standard in high quality ink colored fiber loose tube, the color is very clear and easy to fall off, while the low quality fiber optic cable is used poor qualityink coloring or simply coloring and inferior ink colors are vivid and sometimes easy to dissolve in the fiber paste the color can not be distinguished, not colored even more great inconvenience to the construction.

10. Product packaging. The fiber optic cable commonly used packaging wooden plate or the iron wooden tray into the shaft, the outside of the plate sealed wooden seal plate to ensure that the bulky fiber optic cable throughout the transit force, bending radius conditions within the scope of the standard requirements. Low-quality fiber optic cable in order to save costs, generally very poor packaging tray, transported to the destination is almost close to falling apart, and some simply do not have the disk, look around cable is shipped, or the disc do not have to seal the wood.

In summary, optical fiber cable real good or bad from the structural design, integrated the difference between the pros and cons of the timber material and production process. Because the cable is not yet a large number of popular, low-quality products, while a lot of hidden dangers, many users even integrators do not understand the line is still used regardless of settings.

It is for this reason that the negative impact of low-quality fiber optic cable industry will be even greater, because the fiber optic cable itself, its value is not significant, but the cost of laying process (direct burial, aerial, wearing a tube) were truly amazing.and time-consuming, coupled with its entire communication link based medium, so if there are problems, no matter how expensive your hardware devices at both ends of the high-end, the entire system will be, without exception, completely paralyzed, will be a very long period of repair, resulting in the loss of thousands of times the difference between the pros and cons.

If you want to know more about breakout fiber cable, hybrid cable or fiber optic cable cost, please visit our website.

Understand Variety of Fiber Optic Cables and Components Basic Knowledge

1. FTTH fiber cable

FTTH (Fiber To The Home), by definition is an optical fiber directly to the home. Specifically, FTTH refers to the optical network unit (ONU) installed in the home user or business user, in addition to the optical access family FTTD (fiber to the desktop) closest to the users outside the optical access network application type.

There are five main advantages of FTTH:

. It is passive network, from the central office to the user, the intermediate can be done basically passive;

. Its bandwidth is relatively wide, long-distance carriers fits the way large-scale application;

. Because it is hosted on the fiber business, and there is no problem;

. Because of its relatively wide bandwidth, support for the agreement is more flexible;

. As technology advances, including point to point, 1.25G and FTTH way have developed a relatively complete function.

2. Indoor fiber cable

Indoor optical fiber cables are classified according to cable using the environment, as opposed to a outdoor fiber optic cable.

Indoor cable is made up of optical fiber (optical transmission medium) through a certain process and the formation of the cable. It is Mainly composed of optical fiber glass(glass as thin as a hair) and plastic protective sleeve and plastic sheath structure, fiber optic cable is not gold, silver, copper and aluminum and other metals usually no recovery value.

Indoor fiber optic cable is a certain amount of composition according to certain way cable heart, outsourcing jacket, and some also cover the outer sheath for optical signal transmission to achieve a communication line.

The tensile strength of the small indoor fiber optic cable, a protective layer is poor, but also more lightweight and economical. Indoor cable mainly used in building wiring, and connections
between network devices.

3. Outdoor fiber optic cable

Outdoor fiber optic cable, used for outdoor optical cable. As opposed to a indoor optical fiber cable.

Outdoor cable is one of the optical transmission line. Consists of a certain number of optical fiber according to certain way cable, outsourcing has a sheath, some still coated outer sheath.

Outdoor fiber optic cable consists of an optical fiber glass (glass as thin as a hair) and plastic to protect casing and plastic coating, fiber optic cable is no gold, silver, copper, aluminum and other metal, there is no recycling value.

Outdoor fiber optic cable tensile strength greater than the thick protective layer, and is usually sheathed (i.e metal leather wrapped). Outdoor cables is mainly applied to buildings, and between the interconnection between remote networks.

4. Fiber Optic Patch Cord

Fiber optic patch cord used to make the link from the device to the jumper cables fiber optic cabling. Fiber jumper has a thicker layer of protection, commonly used in the connection between the optical and terminal box. The commonly used fiber optic jumper include: ST, LC, FC, SC type.

Main categories:

Single-mode fiber jumper (Single-mode Fiber): Average single-mode fiber jumper with yellow connector and protective sleeve blue; transmission distance is longer.

Multimode fiber jumper (Multi-modeFiber): General multimode fiber jumper in orange, and some in gray, fittings and protection applied beige or black; transmission distance is shorter.

5. Optical Fiber Coupler

Fiber coupler also known as fiber adapter, fiber coupler for connecting fiber optic connectors, couplers. According to fiber optic connector head selection models. According to the connection head structure can be divided into: FC, SC, ST, LC, MTRJ, MPO, MU, SMA, DDI, DIN4, D4, E2000 various froms.

6. Optical fiber terminal box

Optical cable terminal box (also known as fiber optic terminal box or cable box) is a small core fiber optic cable to connect with the terminal equipment, mainly used for cable ends fixed, cable and fiber pigtail splice and I containment and protection.

7. Fiber Fusion Splicer

Two fiber optic cable connection, fiber optic cable should butt up inside the fiber because fiber is like glass, must be refused on the two dedicated connectors, connector card and then put together, so that the optical signal can be passed.

Light in the optical fiber transmission loss can be created, the loss is mainly consist of optical fiber transmission loss and loss of fiber of welding joint. Fiber cable once order, the basic purpose of optical fiber transmission loss but also determined that the loss of fiber of welding joint is related to fiber itself and site construction. Efforts to reduce the loss of fiber of welding joint, can increase the fiber optic repeater amplification and transmission distance attenuation of optical fiber link margin.

If you would like to purchase these items or want to know more about fibre optic cable specification, optical cable price or loose tube fiber optic cable, please visit our website.

Breakout Fiber Optic Cable

Breakout fiber cable also called fanout cable, is an optical fiber cable containing several jacketed simplex optical fibers packaged together inside an outer jacket. They can be easily divided into individual fiber lines as each fiber is individually reinforced. This differs from distribution style cable, in which tight-buffered fibers are bundled together, with only the outer jacket of the cable protecting them. The design of breakout-style cable adds strength for ruggedized drops, however the cable is larger and more expensive than distribution-style cable. Breakout cable is suitable for short riser and plenum applications and also for use in conduits, where a very simple cable run is planned to avoid the use of any splice box or spliced fiber pigtails.

Because each fiber is individually reinforced, the breakout cable can be easily divided into individual fiber lines. Each simplex cable within the outer jacket may be broken out and then continue as a patch cable, for example in a fiber to the desk application in an office building. This enables connector termination without requiring special junctions, and can reduce or eliminate the need for fiberoptic patch panels or an optical distribution frame. Breakout cable requires terminations to be done with simple connectors, which may be preferred for some situations. A more common solution today is the use of a fanout kit that adds a jacket to the very fine strands of other cable types.

Breakout cables normally contain a ripcord, two non-conductive dielectric strengthening members (normally a glass rod epoxy), an aramid yarn, and 3 mm buffer tubing with an additional layer of Kevlar surrounding each fiber. The ripcord is a parallel cord of strong yarn that is situated under the jacket(s) of the cable for jacket removal.

A breakout fiber optic cable offers a rugged cable design for shorter network designs. This may include LANs, data communications, video systems, and process control environments.

A tight buffer design is used along with individual strength members for each fiber. This permits direct fiber optic cable termination without using breakout kits or splice panels. Due to the increased strength of Kevlar members, breakout fiber optic cables are heavier and larger than the telecom types with equal fiber counts.

The term breakout defines the key purpose of fiber optic breakout cable. That is, one can “break out” several fibers at any location, routing other fibers elsewhere. For this reason breakout cables are, or should be, coded for ease of identification.

Because fiber optic breakout cable is found in many building environments where codes may require plenum cables, most breakout cables meet the NEC’s requirements. The cable is available in a variety of designs that will accommodate the topology requirements found in rugged environments. Fiber counts from simplex to 256 are available.

If you would like to purchase our breakout fiber optic cable or want to learn about outdoor fiber optic cable or fibre optic cable specification, please visit our website.

Introducing Two Basic Cable Design

There are two basic cable design, loose tube cable and tight buffered cable. Loose-tube cable, used in the majority of outside-plant installations in North America, and tight-buffered cable, primarily used inside buildings.

The modular design of loose-tube cables typically holds up to 12 fibers per buffer tube with a maximum per cable fiber count of more than 200 fibers. Loose-tube cables can be all-dielectric or optionally armored. The modular buffer-tube design permits easy drop-off of groups of fibers at intermediate points, without interfering with other protected buffer tubes being routed to other locations. The loose-tube design also helps in the identification and administration of fibers in the system.

Single-fiber tight-buffered cables are used ase pigtails, patch cords and jumpers to terminate loose-tube cables directly into opto-electronic transmitters, receivers and other active and passive components.

Multi-fiber tight-buffered cables also are available and are used primarily for alternative routing and handling flexibility and ease within buildings.

Loose Tube Cable

In a loose-tube cable design, color-coded plastic buffer tubes house and protect optical fibers. A gel filling compound impedes water penetration. Excess fiber length (relative to buffer tube length) insulates fibers from stresses of installation and environmental loading. Buffer tubes are stranded around a dielectric or steel central member, which serves as an anti-buckling element.

The cable core, typically surrounded by aramid yarn, is the primary tensile strength member. The outer polyethylene jacket is extruded over the core. If armoring is required, a corrugated steel tape is formed around a single jacketed cable with an additional jacket extruded over the armor.

Loose-tube cables typically are used for outside-plant installation in aerial, duct and direct-buried applications.

Tight-Buffered Cable

With tight-buffered cable designs, the buffering material is in direct contat with the fiber. This design is suited for “jumper cables” which connect outside plant cables to terminal equipment, and also for linking various devices in a premises network.

Multi-fiber, tight-buffered cables often are used for intra-building, risers, general building and plenum applications.

The tight-buffered design provides a rugged cable structure to protect individual fibers during handling, routing and connectorization. Yarn strength members keep the tensile load away from the fiber.

As with loose-tube cables, optical specifications for tight-buffered cables also should include the maximum performance of all fibers over the operating temperature range and life of the cable. Averages should not be acceptable.

If you’d like to purchase or learn more about our loose tube cable, breakout fiber cable or hybrid cable, simply visit our offical website or call our customer service.

The Different Types of Optical Fiber Cable?

There are many types of fiber optic cable used to supply data to mobile phones, computers and TVs, each handling light in a different way, and each made for a different application. There are two main types of optical fiber cable, multimode and single mode, which use either several beams of light or a single beam at once. Simplex cables use only one or two optical fibers and Kevlar protection. Tightpack cables contain many optical fibers, but the fibers are not individually terminated. Loose tube cables include a water blocking gel and are used outdoor or are buried underground.

Multimode and single mode are the two main types of optical fiber cable, though the terms do not refer so much to the cable design as to how the fibers interact with light. The multimode version sends out many different light beams at once, and each is sent at a different angle so the beams cannot interact with each other, eliminating the chance of interference. These types of optical fiber cable can only be used for short distances; otherwise, the light beams begin to interfere with on another. Single mode optical fibers send only one beam of light at a time, making them ideal for long distances, because there are not multiple light beams to cause interference.

While a multi-mode optical fiber is cheaper than a single-mode fiber, it is only effective at supplying power to short distances, around 1,968 feet (600 meters). This is because of the different light rays working at once. If the cable is used for longer distances, the light rays begin either to conflict or disperse, meaning that power is inefficiently transferred or will not reach the target destination.

Simplex cables are simplx fiber optic cables that are used for backplanes and patch cord purposes. The outside is reinforced with Kevlar to keep the optical fibers from wearing down as a result of outside stress. Inside, there are only one or two fibers, which make it good for applications for which limited energy is needed.

Tightpack cables are similar to simplex but include many more fibers. The fibers are paired up and jacketed, as with the simplex cables, but there are many pairs, not just one. A major difference, aside from fiber number, is that the fibers are not individually terminated or protected, so there must be a termination unit connected to these types of optical fiber cable. These cables are used mostly for dry conduit runs over short distances.

Loose-tube cable does not use protection or jacketing for their internal fibers, but have another way of keeping the fibers safe. The insulation is filled with a water-blocking gel that is able to keep water from leaking into the cable and also keeps the fibers safe by adding durability to the inside of the cable. These cables are often used outdoor, either in the air or buried underground.

FiberStore is a fiber network solution website, want to know more about outdoor cablefiber optic cable specification please visit our website.

What is Outdoor Fiber Optic Cable

Outdoor fiber optic cable, simply used for outdoor fiber optic cable, belong to a kind of optical fiber cable, for the most suitable to use in outdoor so called outdoor fiber optic cable, it is durable, can withstand the freezing of weathering, the outer packing, which have some such as pressure, corrosion resistance, tensile mechanical properties, environmental characteristics.

Outdoor cable tensile strength is larger, protective layer is thick, and usually for armored (i.e. metal leather wrapped). Outdoor cables is mainly applied to buildings, and between the interconnection between remote networks.

Generally speaking, outdoor cable just filler, reinforcing member, jacket and so on use of different materials. Such as: outdoor fiber optic cable buried, should use armored cable. Aerial, with two or more optional root reinforcement of black plastic optical fiber cable outer sheath.

Outdoor cable because of its use of the environment is outdoors, it must have a waterproof function, generally used by the outer sheath is made of PE material, and its internal structure is generally divided into the central tube structure and layer twisted structure.

Outdoor fiber optic cable is a complete optical signal transmission lines of communication. By a number of fiber optic cable core composition in accordance with a certain way, outsourcing jacket, and some also cover the outer sheath.
Outdoor fiber optic cable consists of an optical fiber (glass as thin as a hair) and plastic casing and plastic sheath constituted maintenance, fiber optic cable is not gold, silver, copper and aluminum and other metals.

Outdoor optical cable laying

Communication cable since 70s application, has now developed into a long haul, local telephone relay, underwater and undersea communications and local area networks, private networks and other cable transmission backbone, and has begun to develop the access network to the user by the fiber to curb (FTTC), fiber to the building (FTTB) and so on to the fiber to the home (FTTH) development. For a variety of applications and environmental conditions, communications cable with aerial, buried fiber optic cable, pipelines, underwater, indoor installation, etc.

Aerial optical cable

Aerial cable is hung on pole using optical fiber cable. This way of laying can take advantage of the existing aerial light road, save construction costs and shorten the construction period. Aerial cables hanging in the pole, must adapt to a variety of natural environments. Aerial cables susceptible to typhoons, ice, floods and other natural disasters, the threat also vulnerable to outside influence and weaken their mechanical strength and other effects, so the failure rate is higher than the aerial cable and pipeline buried fiber optic cable. Generally used for long-distance two or level 2 of the line, cable lines for private networks or some local special location.

Direct Burial Fiber Cable

The cable outside a strip or wire armored, direct burial in the ground, requiring performance against external mechanical damage and prevent soil erosion performance. According to the different use of the environment and conditions for use of different sheath structure, for example, there are areas of Pest Insects and Rodents, to use a pest control rat gnawing of the cable sheath. According to the soil and the environment, the depth of buried fiber optic cable is generally between 0.8m to 1.2m. In laying, you must also pay attention to maintaining fiber strain within the limits allowed.

Duct Optical Cable

Pipe laying is usually in urban areas, pipe laying environment better, so the cable sheath are no special requirements, no armor.

Pipe laying laying before the next election and the length of the segment connecting point. Laying beside cited can use mechanical or manual traction. Do not exceed a towing cable to allow traction tension. Pipe materials can be produced based on the geographical choice of concrete, asbestos cement, steel, plastic tubes.

Underwater Fiber Optic Cable

Underwater fiber optic cable through the radiation in the bottom of rivers, lakes and the riverbank, etc. The fiber optic cable, fiber optic cable laying environment than this pipe laying, burying the condition much worse. Underwater fiber optic cable must be used wire or steel armored structure, retaining layer structure according to the hydrogeological conditions of rivers into account. For example, in stony soil, erosion and strong seasonal riverbed, cable suffer from wear and tear, Rally situation, do not only need thick steel wire armored, to use its double-armored construction methods should be based on river width, water depth, flow rate, etc. for the selected drawing riverbed. Laying underwater fiber optic cable buried fiber optic cable severe conditions than many, techniques and measures to repair the failure is also much more difficult, so the reliability requirements of underwater fiber optic cable buried fiber optic cable than high.

Submarine cable is underwater cable, but the laying of underwater cables environmental conditions more severe than normal, demanding the submarine cable system and its original life requirements in more than 25 years.