Fiberstore Passive Optical Components Solution

Passive optical components market is propelled by the accelerating bandwidth requirements coupled with the growth of passive optical network (PON). Usage of passive optical components to obtain energy efficient network solutions is gaining popularity. This article will introduce some Fiberstore passive optical components.

Optical Attenuators: an optical attenuator is a device that is used to reduce the power level of an optical signal. Optical attenuators are commonly used in fiber optic communications, either to test power level margins by temporarily adding a calibrated amount of signal loss, or installed permanently to properly match transmitter and receiver levels.

optical attenuators

Optical Circulator: an optical circulator is a multi-port (minimum three ports) non-reciprocal passive component. The function of an optical circulator is similar to that of a microwave circulator — to transmit a light wave from one port to the next sequential port with a maximum intensity, but at the same time to block any light transmission from one port to the previous port.

optical circulator

Fiber Collimator: a fiber collimator is a device for collimating the light coming from a fiber, or for launching collimated light into the fiber. It is used to expand and collimate the output light at the fiber end, or to couple light beams between two fibers. Both single-mode fiber collimators and multimode fiber collimators are available.

fiber collimator

Optical Isolator: an optical isolator is a passive optical component that allows light to propagate in only one direction. Optical isolators are typically used to protect light sources from back reflections or signals that can cause instabilities and damage. The operation of optical isolators depends on the Faraday effect, which is used in the main component, the Faraday rotator.

optical isolator

Fiber Optic Sensor: a fiber optic sensor is a sensor that uses optical fiber either as the sensing element (intrinsic sensors), or as a means of relaying signals from a remote sensor to the electronics that process the signals (extrinsic sensors). Fiber optic sensors are immune to electromagnetic interference, and do not conduct electricity so they can be used in places where there is high voltage electricity or flammable material such as jet fuel.

fiber optic sensor

Pump Combiner: a pump combiner is a passive optical component built based on fused biconical taper (FBT) technique. Pump combiners are widely used in fiber laser, fiber amplifier, high power EDFA, biomedical and sensor system etc. Three types of pump combiners are available: Nx1 Multimode Pump Combiner, (N+1)x1 Multimode Pump and Signal Combiner, PM(N+1)x1 PM Pump and Signal Combiner.

pump combiner

Polarization Components: polarization is the state of the e-vector orientation. Polarization components are used to isolate and transmit a single state of polarized light while absorbing, reflecting, and deviating light with the orthogonal state of polarization. Polarization components can be utilized in high power optical amplifiers and optical transmission system, test and measurement.

polarization components

Fiberstore has all of the above passive optical components with high quality and reasonable price. You can select excellent passive optical components or other optical products for your network at

Introduction to Fiber Optic Sensor

In recent years, fiber optic sensor has been deployed successfully in the supervision of structures. Because it is immune to electromagnetic interference and can handle extreme conditions, so it is gaining popularity as the sensor of choice for many industries. Fiber optic sensor is a sensing device that converts light rays into electronic signals. It is usually used for measuring physical quantities such as temperature, pressure, strain, voltages and acceleration etc. This blog is to introduce fiber optic sensor’s classification, characteristics and applications.


Fiber optic sensor can be mainly classified by sensing location, operating principle and applications. Depending on location of sensor, there are intrinsic and extrinsic fiber optic sensors. Considering the operating principle and demodulation technique, fiber optic sensors can be further divided into intensity, phase, frequency and polarization sensors. Based on application, fiber optic sensors can be classified in physical, chemical, bio-chemical sensors.

Fiber optic sensor offers unique characteristics that make it very popular and sometimes become the only viable sensing solution. Some inherent characteristics of fiber optic sensor are shown as following:

  • Harsh environment stability to strong electromagnetic interference immunity, high temperature and chemical corrosion, as well as high pressure and high voltage etc.
  • Very small size, passive and low power.
  • Excellent performance such as high sensitivity and wide bandwidth.
  • Long distance operation.
  • High sensitivity.
  • Multiplexed or distributed measurements – which are used to offset their major disadvantages of high cost and end-user unfamiliarity.
Fiber optic sensor has a variety of applications that can be found in equipment from computers to motion detectors. Several applications are specifically shown as following:

  • Mechanical Measurement – such as rotation,acceleration, electric and magnetic field measurement, temperature, pressure, acoustics,vibration, linear and angular position, strain, humidity, viscosity etc.
  • Electrical & Magnetic Measurements
  • Chemical & Biological Sensing
  • Monitoring the physical health of structures in real time.
  • Buildings and Bridges – concrete monitoring during setting, crack monitoring, spatial displacement measurement, neutral axis evolution, long-term deformation monitoring, concrete-steel interaction and post-seismic damage evaluation.
  • Tunnels – multipoint optical extensometers, convergence monitoring, shotcrete vaults evaluation, and joints monitoring damage detection.
  • Dams – foundation monitoring, joint expansion monitoring, spatial displacement measurement, leakage monitoring, and distributed temperature monitoring.
  • Heritage structures – displacement monitoring, crack opening analysis, post-seismic damage evaluation, restoration monitoring, and old-new interaction.
  • Detection of Leakage

By this blog, we have learnt some basic knowledge about fiber optic sensor by its classification, characteristics and applications. However, it is not just enough, more knowledge is waiting for us to learn. For more detailed information about fiber optic sensor, welcome to visit Fiberstore or contact us over