Tips To Clean Fiber Optic Connectors

Fiber Optic Connectors are susceptible to be damaged which is not immediately obvious to the naked eye. The damage can have significant effects on measurements. Member any degradation of a fiber ferrule or fiber endface, any stray particles or finger oil on the endface, can have a significant effect on connector performance.

Fiber optic connector and connector ferrules have to be completely cleaned to make sure the trouble totally free working of fiber optic systems. As you’ve devote superior money installing a fiber optic, you might want to opt for a world course fiber optic connector cleaner and bnc coaxial connector to help keep it in superior shape.

Well, cleaning fiber optic connector can be done either with the help of a professional service provider or with the help of DIY kits. Below are a couple of time-tested methods.

1. Use Wipes And Solvents

This is probably the most widely used method of cleaning for the fiber optic parts. Cotton, cloth or lens paper is usually used for using this technique. Fabric and/or composite material wipes provide combined mechanical action and absorbency to remove contamination. Wipes should be used with a resilient pad in order avoid potential scratching of the connector end-face. Most solvents can provide good cleaning for the surfaces and tend to leave a slight residue that evaporates after a while.

This method is appropriate for cleaning connectors with exposed ferrules or termini but cannot be used to clean connector end-faces within alignment sleeves. The wipe should be constructed of material that is lint free and non-debris producing during the cleaning process. Please note that dry wipes have been shown to leave a static charge on the end-face of the connector which can thereafter attract particulate contamination. Therefore it is recommended that a static dissipative solvent be used with a dry wipe to eliminate this condition.

If the connector is not clean after the first cleaning, the process can be repeated perhaps with slightly more pressure on the connector to increase the mechanical action and perhaps making several stokes from the damp to dry sections of the cleaning material.

2. Cleaning Through Connector Reels

Optipop and Cletop are the most widely used reel connectors that are used in the industry for proper cleaning solutions. These work on the function of a resilient pad, sliding dust cover as well as a certain mechanism that tends to keep these small parts of the gadget working known as the ratcheting mechanism. The connector is inserted into an Fiber Optic Inspection scopes. This is done to check how clean the connector is.

About Solvents

Solvents used to clean fiber optics should be static-dissipative and residue-free. Many solvents are flammable and/or packaged so that transportation of the solvent is considered a hazardous material increasing cost of shipment and storage of the solvent. However, there are solvents available that are non-flammable and non-hazardous and packaged so that shipping requires no additional fees or paperwork.

Mind:

The methods require technical skill and expertize, it is advisable to trust the best in line professionals for fiber optic cleaning. Professional groups will not only ensure that your connectors are taken good care of, but also will prevent any sort of technical failures due to improper cleaning techniques.

To Introduce Optical Communication and Internet Technology

Technology of Terabit Optic Circuit Packet Integrated Switching System

New exchange system and integrated optic circuit packet layers will be provided to meet the large capacity, high quality, low cost and effective demand so as to adapt to the cable wireless traffic spikes in the service in the future.

A connection-oriented packet transport technology is considered to be an effective way to improve the performance of packet data transmission. It is necessary, can put a layer of transport network in the direction of capital spending and minimizing operating costs to overcome the network provider’s storage and traffic increase of income. And unified control mechanism is applied to the network resource allocation, flexible wavelength circuit and packet layer according to the service characteristics. The key technologies of the system are as followings.

Technology of Terabit Optic-Circuit-Packet Integrated Switching System
  • Connection-oriented Packet Transport
  • Optic-Circuit-Packet Integrated Switch
  • Optic-Circuit-Packet Layer Integrated Control/Management
Technology of beyond-100G Optical Transmission
  • Long-reach OTN Transceiver
  • Short-reach Ethernet Transceiver

Technology of Terabit Optic-Circuit-Packet Integrated Switching System

Technology of terabit optic circuit packet integrated switching system

Smart IDC Network Control Technology for Cloud Service

Along with the rapid spreads and changes of cloud services and the technologic growth of the components in the IDC, the IDC networks are demanding following changes.

Cloud optimized: The virtualization rate of the server is rising up to 10:1-100:1 and storage virtualization is also possible recently. So IDC is requiring the cloud-optimized virtualization to the network side which are connecting the virtualized cloud resources.

Flattened: There are network control needs to reduce the delay latency of virtualized server-to-server communications which is occuping up to 70%, to rise the utilization rate the link resources of L2 IDC networks of Tree-shape multi-layer hierarchical architecture with STP.

Auto-Managed: There are demands of integrated management of network and cloud resources between IDC and create/delete/VM migration to ensure seamless services in the cloud.

Therefore, our research target to develop the Smart IDC fiber optic communication to solve the current problems of IDC network with the 3 IDC network control technologies of the Cloud-Optimized Virtual Network Control technology, the Flattened IDC Network Control Technology and Auto-managed IDC network control technology.

High Speed Optical Transmission Technology

The rapid progress in optical transmission technology has been supporting the ever increasing transmission traffic. In particular, the WDM technology, it is by the end of last century, played a main role. However, the new technology needs to use data traffic exponentially. A solution is 100Gb/s transmission. IEEE announced 40G/100G Ethernet standard and ITU-T has completed ONT standard to accommodate 100G signals in DWDM backbone network. Recently, the 100Gb/s transmission technology has become the commercial deployment, in addition to the existing 10Gb/s and 40Gb/s. Already technologies beyond 100G or 400G are started being discussed. With a long-term perspective, it is a disruptive technology, SDM (space division multiplexing) technology is seriously explored to harness the traffic in economic and energy efficient way.

High Speed Optical Transmission Technology

Next Generation WDM-PON Technology

The WDM-PON is promising technology to provide broadband access offering optic-wireless converged next generation multi-application service with the highest quality.

Advantages of the WDM-PON

* Using multiple wavelength on a single fiber, each of which carries a transmission bandwidth up to 10Gb/s at maximum; Therefore, the WDM-PON can reduce the optical access infrastructure;

* Suitable for long-reach application and possible to achieve OPEX reduction;

* Provide co-existence with legacy TDM-PON (EPON system, and GPON) systems and pay as you grow upgradability;

* Unique advantages of so-called protocol transparency, which means that it requires no specific transmission protocol, and the physical layer security, in addition to scalability in the increase of the bandwidth and guarantee of the quality of service based on bandwidth abundance.

Video Multiplexer For CCTV And Surveillance Applications

Fiber-optic-based video and audio multiplexers are designed specifically for pro A/V and broadcast applications. Digital Video Mux is usually applied in video area, especially for Security defensive system.

A video multiplexer, also called mux, includes digital video transmitter and receiver, is a device that put recordings of signals from multiple security cameras on one cassette. It handles several different video signals simultaneously. Video multiplexers can split a monitor into various display areas and vice versa, combine output signals from several cameras to a single monitor. It can be used as a stand-alone video processor to control various types of video views directly to a monitor and/or in conjunction with a VCR surveillance recorder. They can also provide simultaneous display and playback features. Some video multiplexers allow for remote access. They combine the best features of switchers and quads.

Typical Applications of Video Multiplexers:

1. Putting the camera signal on a video channel that is accessible to your television.

2. Configurable camera recording.

3. Closed circuit television (CCTV) and video surveillance applications because a video multiplexer can split a monitor into various display areas.

4. Automatic camera detection.

5. Various media and broadcasting applications.

How to Choose Video Multiplexer?

Video multiplexers come in a variety of configurations and features that conform to certain quality standards. The features may differ in quality of resolution, channels, refresh times, weight, power consumption, etc.

When choosing the video multiplexer, you should consider the number of camera inputs you need while taking into account future changes (in case of expansion). Features you need to look for include the following:

1. A time and date stamp that lets you know when any recorded activity took place.

2. An alarm output.

3. Motion detection.

4. Capability to be used with your computer software.

5. Use with either color or black-and-white cameras.

Multiplexers are described as simplex or duplex. This description indicates the number of multiplexing functions they can perform at any one time. Simplex multiplexers can perform only one multiplexing function at a time and will show a full-screen image, whereas duplex multiplexers show split options while continuing to record because it has two multiplexing processors in the same unit. Thus, a duplex multiplexer can display multiple cameras at the same time while multiplex-recording those cameras. Triplex multiplexers add a third multiplexing processor that has the ability to view live and recorded video on the same screen at the same time. Quadriplexers, or quads, use four camera connections per monitor. Quads can split the screen and display all the four cameras simultaneously. This means that the images are compressed and the image resolution may be low. In comparison, a multiplexer records each camera individually; thus, no loss from compression will occur. This is because when the output of a multiplexer is connected to a recording device, all cameras are individually recorded in sequence.

FiberStore supplies complete video surveillance systems, including Video Multiplexers, Video Data Multiplexer, Video Audio Mux and video Audio Data Multiplexer. We supply video multiplexer in different channels, such as 1, 2, 4, 8, 16, 24, 32 channels. The Data Video Audio Multiplexer is ideal for a wide range of multiplexing and remultiplexing applications including Broadcast/Studio, CCTV audio and Professional AV applications.

A comprehensive understanding of fiber optic connectors

Fiber connector has traditionally been the biggest concern in using fiber optic systems. While connectors were once unwiedy and difficult to use, connector manufacturers have standardized and simplified connectors greatly. This increases the user use convenient increase in the use of optical fiber systems; It is also emphasising taken proper care of and deal with the optical connector. This article covers connector basics including the parts of a fiber optic connector, installing fiber optic connectors, and the cleaning and handling of installed connectors. For information on connector loss, see Connector Loss Test Measurement.

Optical fiber to fiber optic interconnection can be made by a joint, a permanent connection, or a connector, and is different from the plug in it can be to disconnect and reconnect. Fiber optic connector types are as various as the applications for which they were developed. Different connector types have different characteristics, different advantages and disadvantages, and different performance parameters. But all connectors have the same four basic components.

The Ferrule

The fiber is installed in a long, thin cylinder, the ferrule, which act as a fiber alignment mechanism. The ferrule is bored through the center at a diameter that is slightly larger than the diameter of the fiber cladding. The end of the fiber is located at the end of the ferrule. Ferrules are typically made of metal or ceramic, but they may also be constructed of plastic.

The Connector Body

Also known as the connector housing, the body holds the ferrule. It is usually constructed of metal or plastic and includes one or more assembled pieces which hold the fiber in place. The details of these connector body assemblies vary among connectors, but the welding and/or crimping is commonly used to attach strength members and cable jackets to the connector body. The ferrule extends past the connector body to slip into the couping device.

The Cable

The cable is attached to the connector body. It acts as the point of entry for the fiber. Often, a strain relief boot is added over the junctioni between the cable and the connector body, providing extra stength to the junction.

The Coupling Device

Most fiber optic connectors do not use the male-female configuration common to electronic connectors. Instead, a coupling device such as an alignment sleeve is used to mate the connectors. Similar devices may be installed in fiber optic transmitters and receivers to allow these devices to be mated via a connector. These devices are also known as feed-through bulkhead adapters.

Table 1 illustrates some types of optical connectors and lists some specifications. Each connector type has strong points.

Table 1- Types Of Optical Connectors

Installing Fiber Optic Connectors

The method for attaching fiber optic connectors to optical fibers varies among connector types. While not intended to be a definitive guide, the following steps are given as a reference for the basic of optical fiber interconnection.

Cut the cable one inch longer than the required finished length.

Carefully strip the outer jacket of the fiber with “no nick” fiber strippers. Cut the exposed strength members, and remove the fiber coating. The fiber coating can be removed in two ways: a. by soaking the fiber for two minutes in paint thinner and wiping the fiber clean with a soft, lint-free cloth; b. by carefully stripping the fiber with afiber stripper. Be sure to use strippers made specifically for use strippers made specifically for use with fiber rather than metal wire strippers as damage can occur, weakening the fiber.

Thoroughly clean the bared fiber with isopropyl alcohol poured onto a soft, lint-free cloth such as kimwipes. NEVER clean the fiber with a dry tissue.

Note: Use only industrial grade 99% pure isopropyl alcohol. Commercially available medicinal and isopropyl alcohol is light mineral oil dilution water. Industrial grade isopropyl alcohol should be dedicated.

The connector may be connected by applying epoxy or by crimping. If using expoxy, fill the connector with enough epoxy to allow a small bead of epoxy to form at the tip of the connector. Insert the clean, stripped fiber into the connector. Cure the epoxy according to the instructions provided by the epoxy manufacturer.
Anchor the cable strength members to the connector body. This prevents direct stress on the fiber. Slide the back end of the connector into place (where applicable).

Prepare fiber face to achieve a good optical finish by cleaving and polishing the fiber end. Before the connection is made, the end of each fiber must have a smooth finish that is free of defects such as hackles, lips, and fractures. These defects, as well as other impurities and dirt change geometry transmission patterns of light and scattered.

Cleaving

Cleaving involves cutting the fiber end flush with the end of the ferrule. Cleaving, also called the scrible-and-break method of fiber end face preparation, takes some skill to achieve optimum results. Properly handled, the cleave produces a perpendicular, mirror-like finish. Incorrect cracks will cause the lips and the comb as shown in Figure 2. While cleaving may be done by hand, a cleaver tool, available from such manufacturers as Fujikura and FiberStore, allows for a more consistent finish and reduces the overall skill required.

The steps listed below outline one procedure for producing good, consistent cleaves such as the one shown in Figure 3. 1. Place the blade of the cleaver tool at the tip of the ferrule. 2. Gently score the fiber across the cladding region in one direction. If the scoring is not done lightly, the fiber may break, making it necessary to reterminate the fiber. 3. Pull the excess, cleaved fiber up and away from the ferrule. 4. Carefully dress the nub of the fiber with a piece of 12-micron alumina-oxide paper. 5. Do the final polishing. (See Figure 3.)

Polishing

After clean cleave has been achieved, the fiber end face is attached to a polishing brush, and the fiber is ground and polished. The proper finish is achieved by rubbing the computerized fiber end against polishing paper in a figure-eight pattern approximately sixty times.

To increase the ease and repeatability of connector installation, some companies provide the connector kits. Some kits are specific to the type of connector to be installed while others supply the user with general tools and informationi for connecting different types of connectors. Some connectors require the use of an alignment sleeve, also called an interconnection sleeve. This sleeve serves to increase repeatability from connection to connection.

Care and Handling of Fiber Optic Connectors

A number of events can damage fiber optic connectors. Unprotected connector ends can experience damage by impact, airborne dust particles, or excess humidity or moisture. Increase the optical output power of modern lasers may damage a connector, an often overlooked factor in discussions about handling and caring for optical fibers and connectors. Most designers tend to think of the power levels in optical fibers as relatively insignificant. However, a few milliatts at 850nm will do permanent damage to a retina. Today, optical amplifiers can generate optical powers of 1 watt of more into a single-mode fiber. This becomes quite significant when one considers that the optical power is confined in the optical core only a few microns in diameter. Power densities in a single-mode fiber carrying an optical power of 1 Watt (+30 dBm) can reach 3 megawatts/cm2 or 30 gigawatts/m2! To put it in everyday terms, sunlight at the surface of the Earth has a power density of about 1,000 Watts/m2. Most organic materials will combust when exposed to radiant energies of 100 kilowatts/m2. Clearly, power densities of 30 gigawatts/m2 deserve attention.

Cleaning

Another important thing to remember in handling fiber optic connector is that the fiber end face and ferrule must be absolutely clean before it is inserted into a transmitter or receiver. Dust, lint, oil (from touching the fiber end face), or other foreign particles obscure the end face, compromising the integrity of the optical signal being sent over the fiber. From the optical signal’s point-of-view, dirty connections are like dirty windows. Less light gets through a dirty window than a clean one. It is hard to conceive of the size of a fiber optic connector core. Single-mode fibers have cores that are only 8-9 µm in diameter. As a point of reference, a typical human hair is 50-75 µm in diameter, approximately 6-9 times larger! Fiber optic connectors need to be cleaned every time they are mated and unmated; it is essential that fiber optics users develop the necessary discipline to always clean the connectors before they are mated. It is also important to cover a fiber optic connector when it is not in use.

Handling

Never touch the fiber end face of the connector.
Connectors not in use should be covered over the ferrule by a plastic dust cap. it is important to note that inside of the ferrule dust caps contain a sticky residue that is a by product of making the dust cap. This residue will remain on the ferrule end after the cap is removed.

The use of index-matching gel, a gelatinous substance that has a refractive index close to that of the optical fiber, is a point of contention between connector manufacturers. Glycerin, available in any drug store, is a low-cost, effective index-matching gel. Using glycerin will reduce connector loss and back reflection, often dramatically. However, the index-matching gel may collect dust or abrasives that can damage the fiber end faces. It may also leak out over time, causing backreflections to increase.

The Evolution of Optical Amplifiers For DWDM

With the requirements of longer transmission lengths, fiber optic amplifier have become an essential component in long-haul fiber optic networks. Semiconductor optical amplifier (SOA), EDFA optical amplifier, and DWDM system amplifiers relif the effects of dispersion and attenuation, allowing improved performance for long-haul optical systems.

EDFAs

The evolution of EDFA has significantly miniaturized the loss of optical fiber. However dispersion is severely affecting the performance of fiber-optic systems. The light signal is severely distorted by dispersion, due to which signal quality, data rate and distance covered are greatly lessened. Therefore the techniques for effectively controlling the dispersion become burning concern in these systems.

EDFAs allow information to be transmitted over longer distances without the need for conventional repeaters. The fiber is doped with erbium, a rare earth element, that has the appropriate energy levels in their atomic structures for amplifying light. EDFAs are designed to amplify light at 1550 nm. The device utilizes a 980 nm or 1480nm pump laser to inject energy into the doped fiber. When a weak signal at 1310nm or 1550nm enters the fiber, the light stimulates the rare earth atoms to release their stored energy as additional 1550 nm or 1310 nm light. This process continues as the signal passes down the fiber, growing stronger and stronger as it goes.

The photons amplify the incoming signal optically, boosting the wavelength, and avoiding almost all of the active components. The output power of the EDFA is large, and thus, fewer amplifiers may be needed in any given system design. The amplification process is independent of the data rate. Because of this benefit, upgrading a system means only changing the launch/receive terminals.

As demands for wider bandwidth grow there is a call for more efficient and reliable optical amplifiers. The usable bandwidth of an EDFA is only about 30 nm (1530 nm-1560 nm), but the minimum attenuation is in the range of 1500 nm to 1600 nm. The dual-band fiber amplifier (DBFA) solves the usable bandwidth problem. It is broken down into two sub-band amplifiers. The DBFA is similar to the EDFA, but its bandwidth ranges from about 1528 nm to 1610 nm. The first range is similar to that of the EDFA and the second is known as extended band fiber amplifier (EBFA). Some features of the EBFA include flat gain, slow saturation, and low noise. The EBFA can achieve a flat gain over a range of 35 nm which is comparable to the EDFAs. EBFAs have the advantage of reaching a slower saturation keeping the output constant even though the input increases.

DWDM System Amplifiers

The explosion of dense wavelength-division multiplexing (DWDM) applications make DWDM optical amplifiers an essential fiber optic system building block, also forced the fiber optic manufacturers to develop DWDM multiplexer and demultiplexer that can handle closely spaced optical wavelengths. Due to DWDM systems handle information optically rather than electrically, it is imperative that long-haul applications do not suffer the effects of dispersion and attenuation.

Raman amplifier has been found to be an attractive candidate for DWDM system. Improved systems and methods for optical amplification of DWDM signals are provided by FiberStore.

Fiber Optic Pigtail Technology Wiki

As fiber cable network is built by drawing the long lines of physical cables, it is highly impossible to lay a continuous cable end-to-end. Then there comes the fiber pigtail, one of the cable assemblies, has a connector on one end and a length of exposed fiber on another end to melt together with fiber optic cable. By melting together the glass fiber cable, it can reach a minimum insertion loss.

Pigtails are terminated on one end with a connector, and typically the other side is spliced to OSP (Outside Plant Cable). They may be simplex: (single fiber), or multi-fiber up to 144 fibers. Pigtails do have male and female connectors in which male connectors will be used for direct plugging of an optical transceiver while the female connectors are mounted on a wall mount or patch panel. Fiber optical pigtails are usually used to realize the connection between patch panels in a Central Office or Head End and OSP cable. Often times they may also provide a connection to another splice point outside of the Head End or central office. The purpose of this is because various jacket materials may only be used a limited distance inside the building.

You may confused the purpose between fiber optic connector, fiber optic patch cord and fiber optic pigtail. Here we will figure it out.

Fiber optic connector is used for connecting fiber. Using one or two fiber optic connectors in one cable has two items with different assistance in fiber optical solutions.

Fiber optic patch cords(or called fiber jumpers) used as a connection from a patch panel to a network element. Fiber optic patch cords, thick protective layer, generally used in the connection between the optical transceiver and the terminal box.

Fiber Optic Pigtail called pigtail line, only one end of the connector, while the other end is a cable core decapitation. Welding and connecting to other fiber optic cable core, often appear in the fiber optic terminal box, used to connect fiber optic cable, etc.

Fiber optic cable can be terminated in a cross connect patch panel using both pigtail or field-installable connector fiber termination techniques. The pigtail approach requires that a splice be made and a splice tray be used in the patch panel. The pigtail approach provides the best quality connection and is usually the quickest.

Fiber pigtails are with premium grade connectors and with typical 0.9mm outer diameter cables. Simplex fiber pigtail and duplex fiber pigtails are available, with different cable color, cable diameter and jacket types optional. The most common is known as the fusion splice on pigtail, this is done easy in field with a multi-fiber trunk to break out the multi-fibers cable into its component for connection to the end equipment. And the 12 fiber or 6 fiber multi color pigtail are easy to install and provide a premium quality fiber optic connection. Fiber optic pigtails can be with various types of fiber optic terminations such as SC, FC, ST, LC, MU, MT-RJ, MTP, MPO, etc.

Pigtails offer low insertion loss and low back-reflection. They are especially designed for high count fiber optic cable splicing. Pigtails are often bought in pairs to be connected to endpoints or other fiber runs with patch cables.

Several Common Bulk Fiber Cables

With the creation of modern technology, many new networks will choose to use bulk fiber cable instead of traditional copper based cables to increase the capability and speed of the network.Many different types of fiber optic cables in our life. They are generally used in different places. Under different conditions to select the appropriate cable.From Fiberstore, they inculding the Indoor Cables, Outdoor Cables, FTTH Cables, Armored Cables, LSZH Cables and some special cables. They are various at Aerial Cables, Building Cables, Direct buried cables, Duct Cables, Underwater/Submarine Cable. Some of our optical fiber comes with steel tube and steel wire armoring, suitable for sea, lake and river applications. Customers have the flexibility to choose a cable plant to best fit their needs. Only optical fiber that meets or exceeds industry standards is used to ensure quality products with best-in-class performance.So many cable in it, but do you know which cable you need.Tell you some info about LSZH cables,Ribbon fiber cable,Indoor Outdoor Cable.I think it can help you choose the nice cable.

What is Low Smoke Zero Halogen (LSZH) ?
Low Smoke Zero Halogen (LSZH) is a type if cable jacketing made of polypropylene that gives off limited smoke and no halogens when come across fire or strong heat. LSZH cable jacketing consists of thermoplastic or thermoset compounds that produce limited smoke and no halogen when come across high sources of heat, e. grams. flare.Low Smoke Zero Halogen cable can be called LSF (low smoke and fume), LSHF (low smoke halogen free), and LS0H (low smoke zero halogen).

Why to used the LSZH Cables ?
Low smoke zero halogen cable reduces the amount of toxic and corrosive gas emitted during combustion. This type of material is typically used in badly ventilated areas such as planes or railroad cars. Low smoke zero halogen is becoming very popular and, in some cases, a requirement where the protection of men and women and equipment from toxic and corrosive gas is very important.

They don’t produce a dangerous gas/acid combination in case of fire. LSZH patch cords are for utilization in patching environments with poor air circulation where personnel and equipment may be exposed to corrosive fumes and toxins during combustion. The cable jacket for these wires is designed to minimize the release of halogen fumes and toxicants into the air, reducing the potential of hazardous contact in occupied spaces. LSZH cables are mainly used in The european countries.

What is Ribbon Fiber Cable ?
Ribbon fiber optic cable is preferred where high fiber counts and small diameter cables are needed. This cable has the highest packing density, since all the fibers are laid out in rows in ribbons, typically of 12 fibers, and the ribbons are laid on top of each other. Not only is this the smallest cable for the most number of fibers, it’s usually the lowest cost. Typically 144 fibers in ribbons only has a cross section of about 1/4 inch or 6 mm and the jacket is only 13 mm or 1/2 inch diameter! Some cable designs use a “slotted core” with up to 6 of these 144 fiber ribbon assemblies for 864 fibers in one cable! Since it’s outside plant cable, it’s gel-filled for water blocking or dry water-blocked. These cables are common in LAN backbones and data centers.

Where can used the Ribbon Cables?
Ribbon cables are usually seen for internal peripherals in computers, such as hard drives, CD drives and floppy drives. On some older computer systems (such as the BBC Micro and Apple II series) they were used for external connections as well. Unfortunately the ribbon-like shape interferes with computer cooling by disrupting airflow within the case and also makes the cables awkward to handle, especially when there are a lot of them; round cables have almost entirely replaced ribbon cables for external connections and are increasingly being used internally as well.

What is Indoor Outdoor Fiber Optic Cable?
Indoor Outdoor Fiber Optic Cable is designed to meet both the stringent environmental requirements typical of outside plant cable AND the flammability requirements of premise applications. Ideal for applications that span indoor and outdoor environments. By eliminating the need for outside to inside cross-connection, the entire system reliability is improved and with lower overall installation costs.

Ideal for applications that span indoor and outdoor environments, Indoor/outdoor cable can eliminate the need for building entryway splice points, saving both time and money. Outdoor/Indoor cables combine the flame resistance and safety features of an indoor riser or plenum cable with the durability that is critical for OSP use. The result is a unique, dual-purpose cable that can save time and money by allowing OSP applications to flow seamlessly indoors, using a single cable and no splices.

Note:Customers have the flexibility to choose a cable plant to best fit their needs.
If you want to know more info about fiber optic cables,pls visit fiberstore.com or contact us via Sales@fiberstore.com.

Guide To Fiber Optic Polishing

Optical fibers require end-surface treatment for proper light propagation and that includes polishing their ends. Polishing is essential for almost all glass-based fibers with cladding diameters larger than 200 microns. Furthermore, all fiber connectors require polishing. The process of fiber optic polishing can occur in the field or in a technical lab, it employs a range of tools and products used to create precision fits and finishes in the delicate glass ends.

There is typical fiber polishing machine for fiber optic polishing. Fiber Optic Polishing Machines are used to polish the end faces of fiber optic products (cables, connectors, adapters, etc.) in order to minimize signal losses due to scattering. Polishing machines can increase productivity by providing rapid polishing of many different connector styles.

When selecting a fiber polishing machine, there are several features to consider, including adjustable pressure, changeable holders, a timer, and the ability to request custom specifications. Most polishing machines do not offer the flexibility of speed adjustment. This is partially due to the fact that most users only need to handle one type of ferrule material such as zirconia. A slight speed variation does not have significant impact on connector polish result. However, a versatile polisher should have the capability to change speed according the ferrule and polishing film material.

The polishing job typically involves fiber optic fusion splicer, among other cable crimping tools and connectors are needed. It also requires 99% isopropyl alcohol, polishing (lapping) film and pad, a polishing puck, and epoxy or adhesive. Some technicians also find needle, syringe, and piano wire useful.

Several Different Polish Options On Fiber Connectors

The different polish of the fiber optic connector ferrules result in different performance of them, mainly on the back reflection (return loss). Generally, PC type is required at least 40dB return loss or higher, UPC is 50dB or higher, APC is 60dB or higher. (As we know, the higher the return loss, the better the performance). Insertion loss of them all should be less than at least 0.3dB, the lower the insertion loss the better the performance.

Things You Need To Mind During Fiber Optic Polishing

It is important not to dwell on any polishing film longer than necessary. Too much polishing can result in undesirable ferrule length, unnecessary polish film wear, and degraded polish finish due to particle accumulation. Make proper adjustments to the recommended polishing time in each step in case they are less than ideal.

Eye protection is always necessary to protect against powerful industrial lasers used in long-distance single-mode networks. Supporting tools may include a visual fault locater to troubleshoot fiber faults and breaks. A fiber-optic inspection microscope permits precision analysis of hair-fine fibers. Additionally, technicians rely upon jacket strippers, cutters, cable slitters, and fusion splicers.

Conclusion

Fiber polishing is a science but much like an art. The science of polishing is crystallized in a well designed machine while the art of polishing reside in the procedure and the continuous effort for improvement by the individual user. The procedure and the training are just as valuable as the polishing machine.

Understanding Optical Attenuators

Optical fiber attenuators are used to reduce the power level of optical signal, either in free space or in an optical fiber. They are often used in optical communication systems where the optical signal is too strong and needs to be reduced, in which the attenuation, also called transmission loss, helps with the long-distance transmission of digital signals.

Optical attenuators can take a number of different forms and are typically classified as fixed or VOA attenuator. Fixed attenuators can be broken down into either build out style or incorporated into a patch cord. The build out variety is a small (~ 1.25 inch long) attenuator with a male connector interface on one end and a female interface connector on the opposite end. The build out style is typically fabricated with either air gap attenuation or doped fiber attenuation.

Fiber optic attenuators can be designed to use with various types of fiber optic connectors. Commonly used fiber optic attenuators are the female to male type, which is also called a plug fiber attenuator. Another type inline fiber optic attenuator is designed with a piece of fiber optic cable at any length and connectors are installed as the customers request. Fixed value fiber optic attenuators can reduce the optical light power at a fixed level, for example, a 10dB SC fiber optic attenuator will reduce the optical power 10dB and utilize a SC male to female attenuator. Variable fiber optic attenuators are with adjustable attenuation range. There are also attenuation fiber optic patch cables available, their function is the same as attenuators and are used inline.

Variable Attenuator (or ajustable fiber optic attenuator) is a need to provide different under construction decline. The reduction of precision devices for a wide variety of fiber optic transmission lines to carry out scheduled, the amount of light intensity attenuation. There are also handheld variable fiber optic attenuators which are used as test equipment.

Typical attenuation values are between 3 and 20 dB. It is used in optical systems where the optical power from a source is too high for the test equipment in use. Fixed plug type fiber attenuator provides a connector plug (male) and an adapter socket (female) to connect between fiber patch cord and fiber adapter. Fixed plug type optical attenuator introduces an in-line fixed loss that will reduce the source power to an acceptable detection level. The attenuation level should be stable with temperature and wavelength for a stable reliable system.

An optical attenuator uses a segment of attenuating fiber interposed in the optical path. The attenuating fiber is produced by using a solution doping technique to introduce transition or rare earth elements into the fiber’s core. The dopant reduces the transmission of the fiber. The degree of attenuation depends upon the material used as the dopant, the dopant level, and the length of the attenuation segment. In a specific embodiment, an optical attenuator is provided having a first and second signal carrying optical fibers and an attenuating fiber segment, each of which has a core, a cladding substantially coaxial with the core, and a substantially planar end face. The attenuating fiber segment is fusion spliced between the first and second signal carrying optical fibers. In a second embodiment a portion of the cladding of the attenuating fiber is chemically etched.

Wide range variable & inline fiber optic attenuator and the inline fiber optic attenuator are with more accurate attenuation compared with traditional connector type fiber optic attenuators. Variable optical attenuators from FiberStore are specifically designed for use in DWDM networks with individual channel source elements such as add drop multiplexer.

Application of Optical Add-Drop Multiplexer

What’s the Optical Add-drop Multiplexer?

The optical add-drop multiplexers (OADM) are used in wavelength-division multiplexing systems for multiplexing and routing different channels of light into or out of a single mode fiber (SMF). This is a type of optical node, which is generally used for the construction of optical telecommunications networks. An OADM may be considered to be a specific type of cross connect cabinet.

A traditional OADM consists of three stages: an optical demultiplexer, and optical multiplexers, and between them a method of reconfiguring the paths between the optical demultiplexer, the optical multiplexer and a set of ports for adding and dropping signals. The optical demultiplexer separates wavelengths in an input fiber onto ports. The reconfiguration can be achieved by a fiber patch panel or by optical switches which direct the wavelengths to the optical multiplexer or to drop ports. The optical multiplexer multiplexes the wavelength channels that are to continue on from demultiplexer ports with those from the add ports, onto a single output fiber.

Principles of OADM technology

General OADM node can use four port model (Figure 1) to represent, includes three basic functions: Drop required wavelength signal, Add rumored signal to other wavelengths pass through unaffected. OADM specific network process is as follows: WDM signal coming from the line contains mangy wavelength signals into OADM’s “MainInput” side, according to business required, from many wavelength signals to selectively retrieved from the end (Drop) output desired wavelength signal, relative to the end from the Add the wavelength of the input signal to be transmitted. While the other has nothing to do with the local wavelength channels directly through the OADM, and rumored signals multiplexed together, the line output from the OADM (Main Output) Output.

OADM node technical classification

Optical drop multiplexer network technologies can be divided into two types, fixed optical drop multiplexer (Fixed OADM, FOADM) and reconfigurable optical drop multiplexer (Reconfigurable OADM, ROADM).

Fixed Optical Drop Multiplexer (FOADM)

FOADM to filter as the main component, and its function is fixed to join or retrieve certain light wavelengths. General common FOADM can be divided into three types, namely Thin Film Filter type (TFF type), Fiber Bragg Grating (FBG type) and integrated planar Arrayed Waveguide Gratings (AWG type).

TFF FOADM

Thin Film Filter (TFF FOADM)

TFF FOADM using thin film between the filtering effect of the different refractive index.

Fiber Bragg Grating (FBG FOADM)

FBG FOADM use of fiber Bragg grating filtering effect, with two circulator can become FOADM.

Arrayed Waveguide Gratings (AWG FOADM)

AWG FOADM gererally used in semiconductor fabrication processes, the integration of different refractive index material is formed on a flat substrate in a planar waveguide, when different wavelength light source is incident through the couping after the import side, due to take a different path length, while the different phase delay caused by different wavelengths and thus produce certain wavelengths in the export side to form a constructive or destructive interference, making waves in the export side, the different wavelengths will follow the design on a different channel to reach, and thus achieve FOADM function.

Reconfigurable Optical Add/Drop Multiplexer (ROADM)

ROADM can always be adjusted with the distribution network to add and drop wavelength, which reconstruct the network resource allocation, the flexibility to meet the requires of modern urban network, so a flexible ROADM features, plus optical switch substantial advantage, making the current fastest growing ROADM based optical switches based ROADM (switch based OADM). ROADM mainly be the optical switch, multiplexer and demultiplexer composed, Switch-based OADM, mainly divided into Wavelength independent switch array and wavelength selection switch.

Wavelength independent switch array

Type 1: Wavelength independent switch array

Wavelength selective switch

Type 2: Wavelength selective switch

All kinds of optical drop multiplexer performance comparison

optical drop multiplexer performance

OADM network applications

WDM ROADM optical fiber suitable for different network environments

OADM network applications

OADM in the metropolitan network development tendency

1. Arbitrary choice must be retrieved, adding wavelength, the wavelength can take advantage of the limited resources, the node can be retrieved with the need to do to join the adjustment of the signal wavelength, and has a remote control functions. This can provide dynamic reconfiguration of optical communications network capable ROADM will be connected to the backbone network critical devices. And FOADM is used for wavelength demand network access will be smaller parts to reduce costs. Furthermore, ROADM use to all kinds of Tunable Laser, unable Filter, or wavelength selective optical switches and other components.

2. Must be able to convert incompatible wavelength suitable for the backbone network will be transmitted wavelengths. Therefore, OADM be combined with wavelength conversioin Transponder or other functional components.

3. Must be able to compensate for the node to make acquisistion, adding such action energy loss. Therefore, OADM optical amplifiers must be combined with functional components.

4. Wavelength signals related specifications, such as: the signal to noise ratio (S/N), the energy balance between the signal wavelength, etc., are required to meet network requirements. Therefore must be combined OADM variable optical attenuators (VOA), dispersion compensation module (DCM) and other components.