Modern 110 Connecting Blocks For Data Networking

110 blocks are one type of punch blocks used to connect sets of wires in a structured cabling system. The “110″ designation is also used to describe a type of insulation-displacement connector used to terminate twisted pair cables which uses a similar punch-down tool as the older 66 block. People are preffered to 110 blocks rather than 66 blocks in high-speed networks because they introduce less crosstalk and allow much higher density terminations, and meet higher bandwidth specifications. Many 110 blocks are certified for use in Category 5 and Category 6 wiring systems, even Category 6a. The 110 block provides an interconnection between patch panels and work area outlets.

Modern homes usually have phone service entering the house to a single 110 block, when it is distributed by on-premises wiring to outlet boxes throughout the home in series or star topology. At the outlet box, cables are punched down to standard RJ-11 sockets, which fit in special faceplates. The 110 block is often used at both ends of Category 5 cable runs through buildings. In switch rooms, 110 blocks are often built into the back of patch panels to terminate cable runs. At the other end, 110 connections may be used with keystone modules that are attached wall plates. In patch panels, the 110 blocks are built directly onto the back where they are terminated. Category 6 – 110 wiring blocks are designed to support Category 6 cabling applications as specified in TIA/EIA-568-B.2-1 with unique spacing that provides superior NEXT performance.

What is the difference between a “110 block” and a “66 block”?

Both 66 and 110 blocks are insulation displacement connection (IDC) devices, which are key to reliable data connections. 66-clip blocks have been the standard for voice connections for many years. 110 blocks are newer and are preferable for computer work, for one thing, they make it easier to preserve the twist in each pair right up to the point of connection.

1. Although 66-clip blocks historically have been used for data, they are not an acceptable connection for Category 5 or higher cabling. The 110-type connection, on the other hand, offers: higher density (more wiring in a smaller space) and better control (less movement of the wires at the connection). Since more and more homes and businesses call for both voice and data connections, it is easy to see why it makes sense to install 110-type devices in most situations. Most cat5 jacks also use type 110 terminals for connecting to the wire.

2. The 110 block is a back-to-back connection whereas the 66 block is a side-by-side connection. The 110 block is a smaller unit featuring a two-piece construction of a wire block and a connecting block. Wires are fed into the block from the front, as opposed to the side entry on the 66 block. This helps to reduce the space requirements of the 110 block and reduce overall cost. The 110 block’s construction also provides a quiet front, meaning there is insulation both above and around the contacts. Since the quiet front is lacking on the 66 blocks, a cover is often recommended.

3. 110 blocks have a far superior labeling system that not only snaps into place but is erasable. This is particularly important for post-installation testing and maintenance procedures.

110 Connecting Blocks enable you to quickly organize and interconnect phone lines and communication cable, preserve the twists in each pair right up to the connection point. Plus, most networking cable equipment also use 110 type terminals for cable connections.

Technology Of Fiber Optic Amplifiers

In fiber optic communication, the visible-light or infrared (IR) beams carried by a fiber are attenuated as they travel through the material. Then there comes to the fiber optic amplifier which is used to compensate for the wakening of information during the transmission.

Amplifiers are inserted at specific places to boost optical signals in a system where the signals are weak. This boost allows the signals to be successfully transmitted through the remaining cable length. In large networks, a long series of optical fiber amplifiers are placed in a sequence along the entire network link.

Common fiber optical amplifiers include Erbium-Doped Fiber Amplifier (or EDFA Optical Amplifier), Raman fiber amplifier, and silicon optical amplifier (SOA). Erbium doped fiber amplifier is the major type of the fiber amplifier used to boost the signal in the WDM fiber optic system, as we know it is WDM that increase the capacity of the fiber communications system and it is the erbium-doped fiber amplifier that makes WDM transmission possible. Fiber amplifiers are developed to support Dense Wavelength Division Multiplexing (DWDM) which is called DWDM EDFA amplifier and to expand to the other wavelength bands supported by fiber optics.

There are several different physical mechanisms that can be used to amplify a light signal, which correspond to the major types of optical amplifiers. In doped fibre amplifiers and bulk lasers, stimulated emission in the amplifier’s gain medium causes amplification of incoming light. In semiconductor optical amplifiers (SOAs), electron-hole recombination occurs. In Raman amplifiers, Raman scattering of incoming light with phonons in the lattice of the gain medium produces photons coherent with the incoming photons. Parametric amplifiers use parametric amplification.

When light is transmitted through matter, part of the light is scattered in random directions. A small part of the scattered light has frequencies removed from the frequency of the incident beam by quantities equal to the vibration frequencies of the material scattering system. Raman fiber optic amplifiers function within this small scattering range. If the initial beam is sufficiently intense and monochromatic, a threshold can be reached beyond which light at the Raman frequencies is amplified, builds up strongly, and generally exhibits the characteristics of stimulated emission. This is called the stimulated or coherent Raman effect.

EFDA fiber optic amplifier functions by adding erbium, rare earth ions, to the fiber core material as a dopant; typically in levels of a few hundred parts per million. The fiber is highly transparent at the erbium lasing wavelength of two to nine microns. When pumped by a laser diode, optical gain is created, and amplification occurs.

Silicon or semiconductor optical amplifier functions in a similar way to a basic laser. The structure is much the same, with two specially designed slabs of semiconductor material on top of each other, with another material in between them forming the “active layer”. An electrical current is set running through the device in order to excite electrons which can then fall back to the non-excited ground state and give out photons. Incoming optical signal stimulates emission of light at its own wavelength.

Fiber optic repeater also can re-amplify an attenuated signal but it can only function on a specific wavelength and is not suitable for WDM systems. That is the reason why optical amplifiers plays a much more important role in communication systems.

Guide To Choose The Best Fiber Optic Cable Suits Your Application

Fiber optic cable is favored for today’s high-speed data communications because it eliminates the problems of twisted-pair cable, such as near-end crosstalk (NEXT), electromagnetic interference (EMI), and security breaches. Fibre Optic Cable is the preferred option in the interconnecting links between floors or buildings, is the backbone of any structured cabling solution. While, making the right decisions when it comes to Data Network cabling is difficult as it can make a huge difference in the ability of your network to reliably support current and future requirements. There are many factors to consider and today I will guide you through the many options available and find the best one suits your application.

1. Multimode Fiber Cable Or Single-mode Fiber Cable

There are two basic types of fiber: mulitimode and single-mode. Both types consist of two basic components: the core and the cladding which traps the light in the core.

Multimode fiber cable

Multimode fiber, as the name suggests, permits the signal to travel in multiple modes, or pathways, along the inside of the glass strand or core. It is available with fiber core diameters of 62.5 and a slightly smaller 50 microns. The problem with multimode fiber optics is that long cable runs in multiple paths may lead to signal distortion. This can result in incomplete and unclear data transmission.

Applications covering short distances can use multimode fiber optic network cable. Ideal uses for such kinds of cables are within data center connections. Multimode cables are economical choices for such applications. There are various performance levels within the multimode fiber optic cable such as OM3 cable for distances within 300 m, OM4 cable supports Gigabit Ethernet distances within 550m and 10G applications.

Single-mode fiber cable

Single-mode fiber cables offer a higher transmission rate. These cables contain a tiny core that measures about five to ten microns. These tiny cores have the capacity to eliminate distortion and produce the highest transmission speeds. Single-mode fiber generally has a core that is 8.3 microns in diameter. Singlemode fiber requires laser technology for sending and receiving data. Although a laser is used, light in a single-mode fiber also refracts off the fiber cladding. The presence of high intensity lasers helps transfer data across large distances. Singlemode has the ability to carry a signal for miles.

Single mode is used for long haul or extreme bandwidth applications, gives you a higher transmission rate and up to 50 times more distance than multimode, but it also costs more. The small core and its single lightwave virtually eliminate any distortion that could result from overlapping light pulses, providing the least signal attenuation and highest transmission speeds of any fiber cable type.

The best choice to choose multimode optical cable when the transmission distance is less than 2km. In the other sides, use single-mode optical cable when the transmission is more than 2km. Although the core sizes of multimode and singlemode fiber differ, after the cladding and another layer for durability are applied, both fiber types end up with an outer diameter of about 250 microns. This makes it both more robust and easier to work with.

2. Indoor Cable Or Outdoor Cable

The major difference between indoor and outdoor cables is water blocking. Any conduit is someday likely to get moisture in it. Outdoor cables are designed to protect the fibers from years of exposure to moisture.

Indoor Cables

Indoor cables are what we call “tight-buffered” cables, where the glass fiber has a primary coating and secondary buffer coatings that enlarge each fiber to 900 microns—about 1mm or 1/25-inch—to make the fiber easier to work with. Indoor cables are flexible, and tough, containing multiple Tight Buffered or Unit Cord fibers.

Types Of Indoor cables available

indoor cables

Simplex and Zip Cord: Simplex Fiber Optic Cables are one fiber, tight-buffered (coated with a 900 micron buffer over the primary buffer coating) with Kevlar (aramid fiber) strength members and jacketed for indoor use. The jacket is usually 3mm (1/8 in.) diameter. Zipcord is simply two of these joined with a thin web. It’s used mostly for patch cord and backplane applications, but zipcord can also be used for desktop connections. They are commonly used in patch cord and backplane applications. Additionally, they can be utilized for desktop connections. These cables only have one fiber and are generally used indoors.

Distribution cables: They contain several tight-buffered fibers bundled under the same jacket with Kevlar strength members and sometimes fiberglass rod reinforcement to stiffen the cable and prevent kinking. These cables are small in size, and used for short, dry conduit runs, riser and plenum applications. The fibers are double buffered and can be directly terminated, but because their fibers are not individually reinforced, these cables need to be broken out with a “breakout box” or terminated inside a patch panel or junction box. The distribution cable is smaller and used in dry and short conduit runs, plenum and riser applications, is the most popular cable for indoor use.

Breakout cables: They are made of several simplex cables bundled together inside a common jacket for convenience in pulling and ruggedness. This is a strong, rugged design, but is larger and more expensive than the distribution cables. It is suitable for conduit runs, riser and plenum applications, is ideal for industrial applications where ruggedness is important or in a location where only one or two pieces of equipment (such as local hubs) need to be connected.

Outdoor Cables

Optical fiber in outdoor applications requires more protection from water ingress, vermin, and other conditions encountered underground. Outdoor cables also need increased strength for greater pulling distances. Buyers should know the potential hazards that the cables will face, for example, if the cables will be exposed to chemicals or extreme temperatures.

Loose Tube cables: These cables are composed of several fibers together inside a small plastic tube, which are in turn wound around a central strength member and jacketed, providing a small, high fiber count cable. This type of cable is ideal for outside plant trunking applications, as it can be made with loose tubes filled with gel or water absorbent powder to prevent harm to the fibers from water. Since the fibers have only a thin buffer coating, they must be carefully handled and protected to prevent damage. It can be used in conduits, strung overhead or buried directly into the ground.

Ribbon Cable: This cable offers the highest packing density, since all the fibers are laid out in rows, typically of 12 fibers, and laid on top of each other. This way 144 fibers only has a cross section of about 1/4 inch or 6mm! Some cable designs use a “slotted core” with up to 6 of these 144 fiber ribbon assemblies for 864 fibers in one cable! Since it’s outside plant cable, it’s gel-filled for water blocking.

Armored Cable: Cable installed by direct burial in areas where rodents are a problem usually have metal armored between two jackets to prevent rodent penetration. This means the cable is conductive, so it must be grounded properly. You’d better choose armored fiber cable when use cable directly buried outdoor.

Aerial Cable: They can be lashed to a messenger or another cable (common in CATV) or have metal or aramid strength members to make them self supporting. Aerial cables are for outside installation on poles.

The table below summarizes the choices, applications and advantages of each.

Cable Type Application Advantages
Distribution Premises Small size for lots of fibers, inexpensive
Breakout Premises Rugged, easy to terminate, no hardware needed
Loose Tube Outside Plant Rugged, gel or dry water-blocking
Armored Outside Plant Prevents rodent damage
Ribbon Outside Plant Highest fiber count for small size

All cables share some common characteristics. For example, they all include various plastic coatings to protect the fiber, from the buffer coating on the fiber itself to the outside jacket. All also include some strength members for pulling the cable without harming the fibers. Outdoor fiber optic cable has moisture protection, either a gel filling or a dry powder or tape. Direct-buried cables may have a layer of metal armor to prevent damage from rodents. It is advisable that you should customize your cable to make it suitable to your application when the quantity of fiber optic cables is large and also for the cost-effective reasons. Knowing basic information about fiber optic cables make choosing the right one for the project a lot easier. It is always beneficial to konw more about fiber optic cables.

Devices Can Communicate Directly With A Protocol Converter

Protocols are determined by several factors such as data rate, encryption methods, file and message formats and associated service. A protocol converter is tasked with taking this protocol and changing it to another one, making devices connected across these networks to communicate directly. Protocol converters, much like a language translator, translate messages or data streams between networks, to enable both networks easily interpret the data.

Protocol converter is a highly beneficial device used by various industries in order to convert the proprietary or standard protocol of a device into suitable protocol of other tools or device in order to attain inter compatibility. Within a network, the large number of different machines and there is a possibility that different machines will run on different protocols. This can make work difficult, because most protocols are inherently incompatible with one another, thus preventing machines with different protocols from integrating. By using a protocol converter, users can bypass this difficulty by changing the protocol, which allows the different machines to work together — as long as the converter supports the protocols of each machine.

The most attractive benefit of the protocol converter is that the users can carry out the networking and serial communication without even bothering about the programming performed at the hardware level. Without the need of any additional programming for the end user, the protocol converter manages well to transmit the transparent data along the channel which connects a combination of two communication ports. Another key feature of the protocol converter is that of being a programmable driver.

Most protocol converter units are programmed to understand a handful of different protocols, and these units use an internal database to track all the protocols. This database will store all the factors associated with the known protocols, and the database also is tasked with helping this device understand what needs to be changed to alter one protocol to another. Unlike regular databases, which can be manually updated, this database typically is locked from users.

Typical types of protocol converters include E1 to Ethernet, V35 to Ethernet and E1 to V35. The E1 protocol converter is used to convert E1 signal to 10/100Base-T Ethernet signal, and vice versa. It extends the bandwidth to 7.68Mbps. It can be used in two LAN connection, remote monitor or video broadcasting. E1 to V35 protocol converter realizes the bi-directional data transfer from E1 port to V. 35 network. This equipment is used in communication network including WAN and LAN, realizing the transfer from E1 channel of SDH or PDH equipment to V. 35, which maybe provided by routers. V35 to Ethernet Protocol Converter accomplish the converting between the 10/100M Ethernet port and the V. 35 port. It provides at most bandwidth N*64kbps data transmission channel for Ethernet through V. 35 Lines. It is suitable for many situations, such as increasing the range of LAN, founding a special Ethernet network, and so on.

The protocol converters have the capacity to support the Modbus ASCII, Modbus RTU, Modbus TCP and the RFC-2217, E1, Ethernet, V.35, RS232, RS422 and beyond. There are protocol converters that even allow great solution developers the ability to add the proprietary applications and protocols. Also there are converters like RS422 converter and RS232 converter available.

Several Common Types Of Fiber Optic Cables And Patch Cables

1.FTTH Fiber Cable

FTTH (Fiber To The Home), as its name suggests it is a fiber optic directly to the home. Specifically, FTTH refers to the optical network unit (ONU) mounted on home users or business users, is the optical access network application type of closest to users in optical access series except FTTD(fiber to the desktop).

There are 5 main advantages of FTTH:
First, it is a passive network, from the end to the user, the intermediate can be basically passive;
Second, the bandwidth is relatively wide, long distance fits the massive use of operators;
Third, because it is carried business in the fiber, and there is no problem;
Fourth, because of its relatively wide bandwidth, supported protocol is more flexible;
Fifth, with the development of technology, including point-to-point, 1.25G and FTTH have established relatively perfect function.

2. Indoor Fiber Optic Cable

Indoor optical cable is classified according to the using environment, as opposed to outdoor fiber optic cable.

Indoor optical cable is a cable composed of fiber optic (optical transmission medium) after a certain process. Mainly by the optical fiber (glass fiber is as thin as hair),plastic protective tube and plastic sheath. There is no gold, silver, copper and aluminum and other metal, fiber optic cable generally has no recycling value.

Indoor fiber optic cable is a certain amount of fiber optic forming to cable core according to a certain way, outsourcing jacket, and some also coated layer of protection, to achieve a communication line of light signal transmission.

Indoor cable is small tensile strength, poor protective layer, but also more convenient and cheaper. Indoor cable mainly used in building wiring, and connections between network devices.

3. Outdoor Fiber Optic Cable

Outdoor fiber optic cable, used for outdoor environment, the opposite of indoor fiber optic cable.

Outdoor cable is a type of communication line to achieve light signal transmission, is composed of a certain amount of fiber optic forming to cable core according to a certain way, outsourcing jacket, and some also coated with outer protective layer.

Outdoor cable is mainly consists of optical fiber (glass fiber is as thin as hair), plastic protection tube and plastic sheath. There is no gold, silver, copper and aluminum and other metal cable, generally no recycling value.

Outdoor cable is greater tensile strength, thick protective layer, and usually armored(wrapped in metal). Outdoor cables are mainly applied to buildings, and remote networks interconnection.

4.Fiber Optic Patch Cable

Fiber optic patch cable, also known as fiber jumper, used to connect from the device to fiber optic cabling link. Fiber jumper has a thick protective layer, generally used in the connection between the fiber converter and Fiber Termination Box. Commonly used fiber jumpers include: ST, LC, FC and SC.

Main Categories
Single-mode fiber patch cable: General single-mode fiber jumper is colored in yellow, connector and protective sleeve are blue; long transmission distance.

Multi-mode fiber patch cable: General multimode fiber jumper is colored in orange and some in gray, connector and protective sleeve are beige or black and the transmission distance is short.

Fiber optic jumper connector interpretation:
SC Connector: square fiber optical connector;
FC Connector: round with thread;
ST Connector: similar to BNC;
LC Connector: transceiver separation structure;
MT-RJ Connector: square, one with double fiber;
PC Connector: direct contact;
APC Connector:8 degree tilt angle of contact surface;
UPC Connector: arc contact surface.

Fiber Optic Is The Trend In Networks Compared With Copper

Fiber optics is a hot trend in today’s world of communication network, which is a technology that uses glass (or plastic) threads (fibers) to transmit large amount of data. In recent years it has become apparent that fiber-optics are now replacing copper wires as the best means of communication signal transmission. They span the long distances more easily and provide backbones for many communication networks. Why fiber optic is gradually replacing copper networks, we first should konw the pros and cons of copper.

Pros and cons of copper

Telephone companies have long used copper lines, while the cable television companies have relied on coaxial cable for TV, Internet, and VoIP(Voice over Internet Phone) telephone service. Both industries now are making increased use of fiber, hybrid fiber-copper, or hybrid fiber-coaxial cable lines.

The benefit of the old copper service is that, unlike fiber and hybrid-fiber lines, it carries not only the voice and data signals but also the power to operate a standard, non-cordless telephone. The phone company itself provides that power, which often keeps the phones working even when a problem at the power company knocks out electric service.

But traditional copper telephone lines can’t handle the large amount of data required for television and high-speed Internet services, especially over long distances. Although advanced techniques can enhance copper’s capabilities and most other companies are installing fiber or hybrid fiber lines, in some cases alongside the copper ones. We’ve found that telephone and cable company terms and conditions typically warn customers that these systems can’t maintain phone service indefinitely during a power failure, if at all.

The problem is greatest with cable company VoIP services and with systems that use fiber lines all the way to the home. It can be less of a concern with hybrid copper-fiber systems, in which copper lines carry the signal the last mile or so to the home. In those systems, carriers can maintain phone power by installing batteries and generators at the point where the fiber meets the copper.

Why Use Fiber Optic? Is Copper Really Cheaper Than Fiber?

Telcos use fiber to connect all their central offices and long distance switches because it has thousands of times the bandwidth of copper wire and can carry signals hundreds of times further before needing a repeater. The CATV companies use fiber because it give them greater reliability and the opportunity to offer new services, like phone service and Internet connections. Both telcos and CATV operators use fiber for economic reasons, but their cost justification requires adopting new network architectures to take advantage of fiber’s strengths.

When it comes to the cost, fiber optic is always considered to be more expensive than copper cabling. Whatever you look at – cable, fiber termination kit or networking electronics – fiber costs more. So isn’t it obvious that Fiber Optic Network is more expensive than copper? Maybe not! Looking at the cabling component costs may be not a good way to analyze total network costs. A properly designed premises cabling network can also be less expensive.

Introduction To Fiber Optic Couplers

A fiber optic coupler is a device used in fiber optic systems with single or more input fibers and single or several output fibers, which is different from WDM  devices. WDM multiplexer and demultiplexer divide the different wavelength fiber light into different channels, while fiber optic couplers divide the light power and send it to different channel.

Bandwidth
Most types of couplers work only in a limited range of wavelength (a limited bandwidth), since the coupling strength is wavelength-dependent (and often also polarization-dependent). This is a typical property of those couplers where the coupling occurs over a certain length. Typical bandwidths of fused couplers are a few tens of nanometers. In high-power fiber lasers and amplifiers, multimode fiber couplers are often used for combining the radiation of several laser diodes and sending them into inner cladding of the active fiber.

Structure
A basic fiber optic coupler has N input ports and M output ports. N and M typically range from 1 to 64. M is the number of input ports (one or more). N is the number of output ports and is always equal to or greater than M. The number of input ports and output ports vary depending on the intended application for the coupler.

Light from an input fiber can appear at one or more outputs, with the power distribution potentially depending on the wavelength and polarization. Such couplers can be fabricated in different ways:
Some couplers use side-polished fibers, providing access to the fiber core;
Couplers can also be made from bulk optics, for example in the form of microlenses and beam splitters, which can be coupled to fibers (“fiber pig-tailed”).

Types
Fiber optic couplers can either be passive or active devices. Passive fiber optic couplers are simple fiber optic components that are used to redirect light waves. Passive couplers either use micro-lenses, graded-refractive-index (GRIN) rods and beam splitters, optical mixers, or splice and fuse the core of the optical fibers together. Active fiber optic couplers require an external power source. They receive input signals, and then use a combination of fiber optic detectors, optical-to-electrical converters, and light sources to transmit fiber optic signals.

Types of fiber optic couplers include optical splitters, optical combiners, X couplers, star couplers, and tree couplers. The device allows the transmission of light waves through multiple paths.

Fused couplers are used to split optical signals between two fibers, or to combine optical signals from two fibers into one fiber. They are constructed by fusing and tapering two fibers together. This method provides a simple, rugged, and compact method of splitting and combining optical signals. Typical excess losses are as low as 0.2dB, while splitting ratios are accurate to within ±5 percent at the design wavelength. The devices are bi-directional, and offer low backreflection. The technique is best suited to singlemode and multimode couplers.

Choices for fiber optic coupler also include Single window narrow band, Single window Wide band, and Dual window Wide band fiber optic coupler. Single window fiber optic coupler is with one working wavelength. Dual window fiber optic coupler is with two working wavelength. For Single mode fiber, is optimized for 1310 nm and 1550 nm; For Multimode fiber, is optimized for 850 nm and 1310 nm.

Connectors Are Termination Of Cables And Other Applications

Fiber optic connector is a mechanical device mounted on the end of a fiber optic cable, light source, receiver, or housing, the connector allows these devices to be mated to a similar device. Of the many different connector types, connectors for both glass fiber cable and plastic fiber optic cable are available. The terminal ends of all fiber cable strands shall be field connectorized. It is IST’s practice to terminate both ends of all fibers within a fiber cable with ST, epoxy and polish style connectors. Termination of older cables may be of several types including mechanical or fusion spliced pigtails.

There are a number of connector styles on the market including LC, FC, MT-RJ, ST and SC, belong them the SC Connector is the most popular connectors. Manufacturers and distributors are more likely to have equipment to accommodate SC and ST style connectors than any other connector style. That should be a consideration when making product selections.

SC Connectors

SC connectors are used with single-mode and multimode fiber-optic cables. They offer low cost, simplicity, and durability. SC connectors provide for accurate alignment via their ceramic ferrules. An SC connector is a push-on, pull-off connector with a locking tab. Typical matched SC connectors are rated for 1000 mating cycles and have an insertion loss of 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for SC connectors.

FC Connectors

These connectors are used for single-mode and multimode fiber-optic cables. FC connectors offer extremely precise positioning of the fiber-optic cable with respect to the transmitter’s optical source emitter and the receiver’s optical detector. FC connectors feature a position locatable notch and a threaded receptacle. FC connectors are constructed with a metal housing and are nickel-plated. They have ceramic ferrules and are rated for 500 mating cycles. The insertion loss for matched FC connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for FC connectors.

ST Connectors

The ST Connector is a keyed bayonet connector and is used for both multimode and single-mode fiber-optic cables. It can be inserted into and removed from a fiber-optic cable both quickly and easily. Method of location is also easy. ST connectors come in two versions: ST and ST-II. These are keyed and spring-loaded. They are push-in and twist types. ST connectors are constructed with a metal housing and are nickel-plated. They have ceramic ferrules and are rated for 500 mating cycles. The typical insertion loss for matched ST connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for ST connectors.

LC Connectors

LC connectors are used with single-mode and multimode fiber-optic cables. The LC connectors are constructed with a plastic housing and provide for accurate alignment via their ceramic ferrules. LC connectors have a locking tab. LC connectors are rated for 500 mating cycles. The typical insertion loss for matched LC connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for LC connectors.

MT-RJ Connectors

MT-RJ connectors are used with single-mode and multimode fiber-optic cables. The MT-RJ connectors are constructed with a plastic housing and provide for accurate alignment via their metal guide pins and plastic ferrules. MT-RJ connectors are rated for 1000 mating cycles. The typical insertion loss for matched MT-RJ connectors is 0.25 dB for SMF and 0.35 dB for MMF. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for MT-RJ connectors.

MTP/MPO Connectors

MTP/MPO connectors are used with single-mode and multimode fiber-optic cables. The MTP/MPO is a connector manufactured specifically for a multifiber ribbon cable. The MTP/MPO single-mode connectors have an angled ferrule allowing for minimal back reflection, whereas the multimode connector ferrule is commonly flat. The ribbon cable is flat and appropriately named due to its flat ribbon-like structure, which houses fibers side by side in a jacket. The typical insertion loss for matched MTP/MPO connectors is 0.25 dB. From a design perspective, it is recommended to use a loss margin of 0.5 dB or the vendor recommendation for MTP/MPO connectors.

There are also other types of connectors, have a wide seleciton of fiber connectors at FiberStore.

Verizon Considering the Acquisition of Canadian Carriers Wind Mobile

Summary: The U.S Verizon Communications will acquire Canadian carriers Wind Mobile, aiming to enter the Canadian wireless market.

According to the Global and Mail reports that the U.S Verizon Communications is considering to acquire a small mobile operator in Canada in order to enter the Canadian wireless market.

The report, citing unnamed sources, said the Canadian government wants all of the regional markets in the country with at least four major wireless carriers to enhance competition. It is considered by Canadian government that foreign investment struggle of the smaller operators as a way to ensure the competition.

Verizon has conducted exploratory talks with the Canadian Wind Mobile investors, as indicated by the reports, except Verizon, AT & T, Vodafone and Telenor are also potential investors.

Despite Wind and Mobilicity took low-cost market strategy, but the two companies are still not able to turn around. This two smaller operators are completing with larger mobile operators Telus, Bell Mobility and Rogers Communications. Mogilicity is trying to sell itself to Telus, but the government stop the deal with the excuse of that a smaller operators should not been annexed a big carriers. Canadian government has relaxed restrictions on foreign ownership to promote a more competitive wireless market, but the sale of Wind by VimpleCom has been treated in the sale of the government of Canada’s security concerns.

As reports shows, Verizon Wind and VimpelCom are all declined to make comment on it.

Sources said, Verizon will acquire Wind or Mobilicity, and participate in an upcoming spectrum auction. In theory, such a move would lead to more price competition, and put pressure on existing Canadian carriers. “Verizon is now certainly carefully consider this transaction.” One source said.

Canadian wireless market has long been controlled by existing major carries. Earlier this month, the Canadia Radio and Television Commission (CRTC) have made some changes in regulatory policies designed to stimulate more competition. The regulatory agency sad, users can cancel the contract after two years of its wireless contract (in the past, the contract period is three years), it also set up an additional monthly data traffic upper limit beyond the package price cap and international data roaming tariff ceiling respectively, which are respectively $ 50 and $ 100, in order to prevent the emergence of a huge phone bill.

Source: FiberStore News

10Gigabit OM3 and OM4 Fiber Optic Cables

With network speed requirements continuing to increase, especially in high-demand industry sectors such as data centres and service providers, there has been a need for faster and more stable optical fiber infrastructure to support it. OM3 was the first standard to emerge, codifying laser optimization of multimode fiber. This technology was the first to allow designs of laser transmission systems utilizing multimode optical fiber without the use of mode conditioning patch cord. It allowed for 10 gigabyte transmissions. OM4 has stepped in due to the need of supporting longer range applications.

OM4 fiber cable plays a pivotal role in allowing the development of future-proof network solutions for high-demand applications. When coupled with fiber technologies such as the MTP connector, the capacity of OM4 to provide a large bandwidth overhead becomes a great advantage. With it being a newer standard it has also been designed with newer transmission standards in mind, such as the steady influx of 40G Ethernet and the eventual 100G Ethernet rollouts. Where OM3 will be able to support these technologies, OM4 will provide longer distance support for each development and therefore allow a considerably greater level of flexibility at a later stage when upgrade programs commence.

OM3 vs OM4

OM4 is capable of handling 10G Ethernet up to a distance of 400-550m (depending on module capability) where OM3 can only manage up to 300m. The benefit of this is that a single multimode cable run can be used for longer distances than before, removing the need to use more expensive single mode fibre and modules for such mid-sized runs as 500m. OM4 can tolerate a higher level of loss at distances between 200-300m as it is designed to operate at longer distances than OM3. It may be a more flexible option for network managers to install OM4 in these instances, even though OM3 can often manage, as the OM4 option will allow for greater loss due to lower quality terminations, splices or increased bends.

While OM3 fiber will still be future proof in most applications, allowing speeds of 10GB/s up to 100GB/s, OM4 fiber offers users longer long distances and more wiggle room in optical budgets.

OM3 and OM4 fiber cables are typically used in data center structured cabling environments running high speeds of 10G or even 40 or 100 Gigabit Ethernet, SAN (Storage Area Networking), Fiber Channel, FCOE (Fiber Channel Over Ethernet) with such manufacturers as Cisco, Brocade, EMC and others. Typical applications could be virtualization or internal cloud core data center applications.

10G multi-fiber cable assemblies are a necessity for any data center looking for high speed networking throughput. FiberStore provides the cable choice of OM4 OM3 10G fiber cables with standard and multi-fiber assemblies. FiberStore offers a full line of OM3 and OM4 product line. While FiberStore still able to supply the OM3 cable and OM4 fiber patch cables. Our line of multimode duplex fiber cables will be sure to enhance your data transmissions over at a longer distance and at higher data rates than you’ve previously experienced.