Application Cases of 10G CWDM Network

CWDM network, as an easy-to-deploy and cost-effective solution, has been applied in many areas. Although CWDM network is not as perfect as DWDM networks in data capacity, it still can satisfy a wide range of applications in optical applications. And CWDM is a passive network, allowing any protocol to be transported over the link, as long as it is at the specific wavelength. This article is going to describe several application cases of 10G CWDM network in different areas.

Benefits of 10G CWDM Network

Although 40G and 100G networks are developing rapidly, many of them still need to grow on the basis of 10G networks. And due to the high cost of 40G and 100G, 10G networks are still the most common networks to be deployed. Here are the main benefits of 10G CWDM networks.

  • CWDM Mux/Demux is a passive component and requires no extra power, offering a cost-effective choice for network designers.
  • Increased network connections and easy to evolve from 10G to 40G and 100G networks. For example, 10G CWDM network can combine DWDM wavelengths using the 1550nm channel on CWDM Mux/Demux. And if an operator want to upgrade its 10G network to 40G or 100G, there are various fiber components in market that can help him realize this conversion.
  • Lower cost. 10G hardware has become cheaper, which make 10G CWDM network more economical. For example, buying one pcs 8 channels CWDM Mux/Demux which is the most often used in CWDM networks needs less than 330 dollars in some stores. And 10G CWDM optical transceivers are also very cheap now.
10G CWDM Network Infrastructure

As has mentioned above, 10G CWDM network has been widely deployed in different areas. Here are the common CWDM network infrastructures.

Point-to-point 10G CWDM Network

A point-to-point CWDM network is the simplest network structure of CWDM networks, but it is the basis of other complex network infrastructures. By adding other components like CWDM OADM, the point-to-point CWDM network is easy to be changed into more complicated networks. The following figure shows a point-to-point CWDM network using 8 channels CWDM Mux/Demux.

point-to-point CWDM

10G CWDM Ring Network

CWDM ring links are suitable for interconnecting geographically dispersed LANs and storage area networks. Business can benefit from CWDM by using multiple Gigabit Ethernet. As shown in the below picture, the four buildings are connected by several 8 channels CWDM Mux/Demuxes.

CWDM ring network

Application Cases of 10G CWDM Network
Applications in Service Providers

CWDM uses different wavelengths to carry different signals over a single optical fiber, which offers many benefits to service providers that need to better utilize the existing fiber infrastructure. In this application, two Cisco switches are connected together through four 8 channels CWDM Mux/Demuxes. Signals are multiplexed and then transmitted through two strands fiber cables.

CWDM network

10G CWDM Application in Campus Network

As the scale expansion of many campus, the need for adding bandwidth of new applications is increasing too. And the new campus, school teaching and student life Internet require a lot of bandwidth resources, so building a new network is undoubtedly needs a large investment. Then how to make a full use of existing fibers is a problem needed to be resolved.

CWDM in campus

In this case, four 8 channels CWDM Mux/Demux with expansion port are used to double the capacity on the existing fiber without the need for installing or leasing additional fibers, which reduce cost and labor.

Summary

As the development of WDM technology and market, the deployment of CWDM network will be more lower. FS.COM provides affordable CWDM network components at a low price. Following is a list of our products.

Product ID Description
42945 8 channels 1290-1430nm dual fiber CWDM Mux Demux
43099 8 channels 1470-1610nm dual fiber CWDM Mux Demux with expansion port
19367 Cisco Compatible 10G CWDM SFP+ 1470nm 80km DOM Transceiver
31290 Cisco Compatible 10G CWDM SFP+ 1290nm 40km DOM Transceiver

Examples of CWDM Network Deployment Solution

Based on the same concept of using multiple wavelengths of light on a single fiber, CWDM and DWDM are two important technologies in fiber optical communications. As we all know, although the transmission distance of CWDM network is shorter than that of DWDM, it costs less and has the scalability to grow fiber capacity as needed. This article intends to give a simple introduction of components in CWDM networks and to explore some examples of CWDM network deployment cases.

Common Components Used in CWDM Networks
CWDM Mux/Demux

CWDM Mux/Demux, which is based on the film filter technology, is the basic component in CWDM networks. It can combine up to 4, 8 or 16 different wavelength signals from different fiber extenders to a single optical fiber, or it can separate the same wavelengths coming from a single CWDM source. That’s why CWDM can extend existing fiber capacity.

CWDM OADM (Optical Add-Drop Multiplexer)

A CWDM OADM is a device that can add (multiplex) and drop (demultiplex) channels on both directions in a CWDM network. It can add new access points anywhere in CWDM systems without impacting the remaining channels traversing the network. With this ability of OADM, the access points can be added to liner, bus, and ring networks, where the dual direction ring design provides redundant protected architecture.

CWDM Optical Transceiver

Optical transceiver is a necessary element in optical networks. And CWDM optical transceiver is a type of module supporting CWDM network application with CWDM wavelengths. When connected with CWDM Mux/Demux, CWDM transceiver can increase network capacity by allowing different data channels to use separate optical wavelengths (1270nm to 1610nm) on the same fiber. And the common CWDM transceiver type is SFP, SFP+, XFP, XENPAK, X2, etc.

CWDM Network Deployment Solution
Example One

Description: there are five buildings (Sheriff, Courthouse, Admin, Police & Fire, & Public Works) connected via multimode fiber cables (MMF) or single mode fiber cables (SMF). These buildings are linked via multimode SFPs in an existing D-link switches to create one network for internal use of the city offices. Below is a simple graph to show the situation.

CWDM Network 1

Requirements: the goal is to install a single mode fiber network in town to connect numerous buildings. Some of these buildings have access to the city LAN. The Public Works building need to connect with Youth & Recreation Center, Library, Immanuel Lutheran School and the Senior Center. And all these buildings should have unfiltered Internet. Besides, the Waster Water Treatment Plant should be connected passing through the Senior Center. All these services are achieved using CWDM technology.

Solution: according to the requirements, this is a CWDM networks with several buildings to connect with. Here is the solution diagram.

CWDM Network

In the diagram above, we can see there is an 8CH CWDM Mux/Demux connected with the switches. According to the requirements, Youth & Recreation Center, Library, Immanuel Lutheran School and Senior Citizen Center should be connected with the Public Works and need unfiltered services. Therefore, a 4CH CWDM OADM is placed after the CWDM Mux/Demux. Then the four wavelengths will be drop and into the four buildings. In addition, another CWDM OADM is deployed in Senior center to connect the Waster Water Treatment Plant, to meet the requirement. And each site also needs to use CWDM optical transceivers.

Example Two

Description: on site A, there are three Ethernet switches and a T3 router. And their working wavelengths 1470nm, 1490nm, 1510nm, 1530nm and 1610nm. Other three sites B, C, and D also have three Ethernet switches. And a T3 router is in site E. As the following figure shows.

CWDM OADM

Requirements: Considering the cost, all the wavelengths should be transmitted on a single fiber using CWDM technology.

Solution: according to the requirements, here is a simple diagram showing the solution.

CWDM Mux Demux

In order to save cost, a 4CH CWDM Mux/Demux is used to multiplex four wavelengths (from three switches and one router) into one single fiber. At the first site B, a 1CH CWDM OADM is installed to remove one wavelength which is associated with network B. And other three sites are the same—dropping one wavelength associated with corresponding switch or router.

Summary

This article mainly introduces two CWDM network deployment examples. All the components like the CWDM Mux/Demux, CWDM OADM and CWDM transceiver are available in FS.COM. If you are interested in them, please contact us via sales@fs.com.

Related article:Differences between CWDM and DWDM